

Secure,

Multi-lateral Peering

with

OpenSER 1.0.0

Revision History

Revision Date of Issue Changes

0.1 12 Aug 2005 Initial Draft.
0.2 23 Aug 2005 Minor clarifications and edits
0.3 4 Nov 2005 Added Appendix 1 and other edits
0.4 15 Nov 2005 Edited for OpenSER V1.0.0

E-mail: support@transnexus.com
www.transnexus.com
Copyright © 2003-2005 by TransNexus. All Rights Reserved.
TransNexus and OSP Secured are trademarks of TransNexus, Inc.

PAGE 3

Contents

Revision History...2
Contents...3
Introduction ..4

Multi-lateral SIP Peering... 4
Call Detail Record Collection ... 5

Step 1. Build the OSP Toolkit..5
Unpacking the Toolkit... 5
Preparing to Build the OSP Toolkit .. 6
Building the OSP Toolkit .. 7
Building the Enroll Utility... 7

Step 2. Enroll OpenSER with a Peering Server ...7
Overview... 7
Using the Enroll script... 8

Step 3. Compile OpenSER with OSP..9
Obtain the OpenSER code .. 9
Obtain the OSP peering module.. 9
Compile OpenSER with the OSP module... 9

Step 4. Configure OpenSER...9
Step 5. Run OpenSER ..10
Frequently Asked Questions...10

Where are OSP peering module log messages written? ... 10
Can multiple instances of OpenSER be run on the same machine?... 10
Can I use both TCP and UDP for communication?.. 11
How is OSP authentication different from password or access list authentication? 11
Why is time synchronization with the OSP peering server important?... 11

Appendix 1 - OSP Peering Module Parameters...12
sp1_uri, sp2_uri .. 12
device_ip... 12
token_format... 12
private_key ... 13
local_certificate ... 13
ca_certificates... 13
sp1_weight, sp2_weight... 13
device_port ... 13
enable_crypto_hardware_support... 13
ssl_lifetime .. 13
persistence ... 14
retry_delay .. 14
retry_limit... 14
timeout .. 14
max_destinations ... 14
validate_call_id ... 14

MULTI-LATERAL PEERING WITH OPENSER INTRODUCTION

PAGE 4

Introduction

Secure multi-lateral peering uses Public Key Infrastructure (PKI) services to secure, direct peering
among an anonymous group of SIP peers. In a multi-lateral peering architecture, each peer trusts a
common peering authority that enforces routing and access policies on behalf of each peer. The
benefits of multi-lateral peering are increased peering security and the elimination of burdensome
bilateral peering agreements and access control lists which are difficult to administer in a large peering
network.

This document provides build instructions on how to build the OSP Toolkit with OpenSER. The OSP
Toolkit, which is freely available from www.sipfoundry.org, contains an implementation of the OSP
standard defined by the European Telecommunications Standards Institute (ETSI TS 101 321)
www.esti.org. The OSP Toolkit enables the SIP Express Router for secure multi-lateral peering.

Multi-lateral SIP Peering
A peering server is a simple and efficient solution for managing routing, access control and CDR
collection for VoIP calls among a network of OpenSER devices. OSP can be used to securely manage
wholesale VoIP peering among independent SIP networks, or by an enterprise to create a secure VoIP
virtual private network for calling among branch offices using SIP PBXs. The diagram below illustrates
a call scenario between OpenSER networks using OSP peering. Each OpenSER proxy manages calls
within its own domain. However, when a call must be completed outside its own network, an
OpenSER proxy can query a peering server for routing and access information to a destination peer
that can complete the call.

IP Network

11

22

66

77

33 44

55

Peering
Server

OpenSEROpenSER OpenSEROpenSER

OpenSEROpenSER

1. The calling party makes a call.
2. The source OpenSER cannot complete the call within its domain.
3. Peering Request. The source OpenSER queries the peering server for the IP addresses of

other peers that can complete the call to the dialed number.
4. Peering Response. The peering server returns a list of IP addresses of destination peers and

digitally signed peering tokens authorizing access to each destination peer.
5. The source OpenSER routes the call to the destination OpenSER returned by the peering

server. Included in the SIP Invite message is the peering access token signed by the peering
server.

6. The destination OpenSER receives the call and validates the peering token. If the token is
valid, the destination OpenSER routes the call to the called telephone number.

7. The call is completed to calling party.

MULTI-LATERAL PEERING WITH OPENSER STEP 1. BUILD THE OSP TOOLKIT

PAGE 5

Call Detail Record Collection
When the call is over, both the source and destination peers send call detail records to the peering
server as shown in steps 8 and 9 below.

IP Network

88
Peering
Server 99

IP Network

88
Peering
Server 99

OpenSEROpenSER

OpenSEROpenSEROpenSEROpenSER

Step 1. Build the OSP Toolkit

The OSP Toolkit, when compiled, is a library comprised of OSP client functions that simplify sending
and receiving OSP peering messages. It is this library, which will be integrated into the SER. The OSP
Toolkit uses third party software (by default OpenSSL) for cryptographic algorithms and for secure
internet transactions (HTTPS). The OSP Toolkit also includes the application Enroll which enables the
OSP client device to generate its own public-private key pair, get the public key from an OSP peering
server, send a certificate request to a peering server and receive the resulting signed certificate from
the peering server.
In order to successfully compile and use the OSP Toolkit, the following list of software is required:

OpenSSL (required) - Open Source SSL protocol and Cryptographic Algorithms (version 0.9.7g
recommended) from www.openssl.org. Pre-compiled OpenSSL packages are not recommended
because of the binary compatibility issue.

Perl (required) - A programming language used by OpenSSL for compilation. Any version of Perl will
work. One version of Perl is available from www.activestate.com/ActivePerl. If pre-compiled OpenSSL
packages are used, Perl package is not required.

C compiler (required) - Any C compiler should work. The GNU Compiler Collection from www.gnu.org
is routinely used for building the OSP Toolkit for testing.

OSP Server (required for testing) - Access to any OSP server should work. OpenOSP is an open
source server available from www.sipfoundry.org. Also, osptestserver.transnexus.com is freely
available for testing – contact support@transnexus.com for testing access.

Unpacking the Toolkit
After downloading the OSP Toolkit from www.sipfoundry.org, perform the following steps in order:

1) Copy the OSP Toolkit distribution into the directory where it will reside.

2) Unzip the tar file by executing the following command:

MULTI-LATERAL PEERING WITH OPENSER STEP 1. BUILD THE OSP TOOLKIT

PAGE 6

gunzip OSPToolkit-###.tar.gz

Where ### is the version number separated by underlines. For example, if the version is 2.5.4, then the
above command would be:

gunzip OSPToolkit-2_5_4.tar.gz

A tar file will replace the *.gz file.

3) Untar the file by executing the following command:

tar -xvof OSPToolkit-###.tar

Where ### is the version number separated by underlines. For example, if the version is 2.5.4, then the
above command would be: tar -xvof OSPToolkit-2_5_4.tar

A new directory (osptoolkit) will be created within the same directory as the tar file.

4) Go to the osptoolkit directory by running this command:

cd osptoolkit

Within this directory, you will find directories and files similar to what is listed below (if the command "ls
-F" is executed):

> ls -F
enroll/
RelNotes.txt lib/
README.txt license.txt
bin/ src/
crypto/ test/
include/

Preparing to Build the OSP Toolkit
5) Compile OpenSSL according to the instructions provided with the OpenSSL distribution. You

would need to do this only if you don’t have openssl already.

6) Copy the OpenSSL header files (ones with the *.h extension contained in the
include/openssl directory within the directory containing OpenSSL files into the
crypto/openssl directory within the Toolkit. The OpenSSL header files are located under
the include/openssl directory.

7) Copy the OpenSSL library files (libcrypto.a and libssl.a) into the lib directory within the
Toolkit. The OpenSSL library files are located within the openssl directory.

MULTI-LATERAL PEERING WITH OPENSER STEP 2. ENROLL OPENSER WITH A PEERING SERVER

PAGE 7

Building the OSP Toolkit
8) Open the makefile in the src directory. Look for the install path variable – INSTALL_PATH;

edit it to be /usr/local.

cd src; vi Makefile

9) From within the OSP Toolkit directory, start the compilation script by executing the following
commands:

cd src

make clean; make build

The make script can also be used to install the toolkit header files and the toolkit library in the folder that
the user wishes to install them in. The default path is: /usr/local/. The user can modify this to any
path desired. Also, the “make install” command should be used to install the files.

Note: Please make sure you have the rights to access the INSTALL_PATH directory. For example, In
order to access /usr/local directory, normally, you should be root.

Building the Enroll Utility
The Enroll program is a utility application for establishing a trusted relationship between the SER OSP
client and an OSP peering server or certificate authority. This step will build the Enroll utility included
with the OSP Toolkit.

10) From within the OSP Toolkit directory, execute the following commands at the Unix command
prompt:

cd enroll

make clean; make linux

Compilation is successful if there are no errors anywhere in the compiler output. The enroll program is
now located in the OSP Toolkit "bin" directory. For more information on the Enroll utility, please see the
document "Device Enrollment" at www.sipfoundry.org/OSP/OSPclient.

Step 2. Enroll OpenSER with a Peering Server

Overview
To establish a secure relationship between an OSP peering server and the OSP Module in OpenSER
requires three crypto files. These files are:

• localcert.pem - The local certificate for SER signed by the OSP server.
• pkey.pem - The private key generated by the Enroll utility for SER.
• cacert_#.pem - The Certificate Authority (CA) certificate from an OSP server. OpenSER

may enroll with multiple certificate authorities or peering servers. The # represents an integer
indicating the CA certificate from different peering servers.

MULTI-LATERAL PEERING WITH OPENSER STEP 2. ENROLL OPENSER WITH A PEERING SERVER

PAGE 8

The Enroll utility automates the process of enrolling SER with a peering server and creating the three
crypto files. By default, the OSP Module of OpenSER will load the crypto files from the default
configuration directory - /usr/local/etc/openser. If the files are not present, the OSP Module
and OpenSER will not start.

Using the Enroll script
The script ‘enroll.sh’ requires AT&T korn shell (ksh) or any of its compatible variants. The
enroll.sh script should be run from the osptoolkit/bin directory, or the osptoolkit/bin
directory should be in the PATH variable.

From the command line, type enroll.sh followed by the IP address or domain name of the peering
server. Below is an example of the Enroll utility being used to enroll OpenSER with a peering server
named osptestserver.transnexus.com. The gray boxes indicate optional input which will be
included in the OpenSER’s certificate. Error Code 0 indicates the operation was successful with no
error.

enroll.sh osptestserver.transnexus.com
Generating a 512 bit RSA private key
............................++++++++++++
.++++++++++++
writing new private key to 'pkey.pem'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]: _______
State or Province Name (full name) [Some-State]: _______
Locality Name (eg, city) []:_______
Organization Name (eg, company) [Internet Widgits Pty Ltd]: _______
Organizational Unit Name (eg, section) []:_______
Common Name (eg, YOUR name) []:_______
Email Address []:_______

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:_______
An optional company name []:_______

Error Code returned from openssl command : 0

CA certificate received
[SP: osptestserver.transnexus.com]Error Code returned from getcacert command : 0

output buffer after operation: operation=request
output buffer after nonce: operation=request&nonce=6096834216798074
X509 CertInfo context is null pointer
Unable to get Local Certificate
depth=0 /CN=osptestserver.transnexus.com/O=OSPServer
verify error:num=18:self signed certificate
verify return:1
depth=0 /CN=osptestserver.transnexus.com/O=OSPServer
verify return:1
The certificate request was successful.
Error Code returned from localcert command : 0

MULTI-LATERAL PEERING WITH OPENSER STEP 3. COMPILE OPENSER WITH OSP

PAGE 9

Note: The localcert.pem, pkey.pem and cacert_#.pem files generated by the Enroll utility must
be copied to the /usr/local/etc/openser directory.

Step 3. Compile OpenSER with OSP

Obtain the OpenSER code
Download OpenSER 1.0.0 from http://openser.org.

gunzip openser-1.0.0_src.tar.gz

tar –xvf openser-1.0.0_src.tar

It will create a sub-folder starting with openser-1.0.0. The distribution comes with a variety of modules
(under “modules” folder), but does not include the OSP peering module yet. So, download the module
separately and unpack it under openser-1.0.0/modules folder.

Obtain the OSP peering module
Download OSP peering module 0.2.2 from http://osp-module.berlios.de and follow the links to Project
and Files, or directly from http://download.berlios.de/osp-module/osp-0_2_2.tar.gz Un-package
(unzip/untar) the file under openser-1.0.0/modules directory. It should create a new folder “osp”

cd openser-1.0.0/modules; gunzip osp-0_2_2.tar.gz

tar –xvf osp-0_2_2.tar

Compile OpenSER with the OSP module
Build OpenSER with the OSP peering module. Log in as root, go to the openser-1.0.0 folder and run
“make install”. It will build the OpenSER with all modules (including OSP), and distribute
executable and configuration files around the system.

cd ..; make install

Step 4. Configure OpenSER

openser.cfg is the main configuration file for OpenSER. It includes instructions for configuring
OpenSER, loading external modules, configuring modules and CPL (call processing language)
instructions. By default, the OpenSER looks for the configuration file in /usr/local/etc/openser.
OpenSER includes a sample openser.cfg file, but it does not include instructions for using the OSP
peering module. Instead of using the default openser.cfg, use the sample configuration file
modules/osp/etc/sample-osp-openser.cfg. Copy this file to overwrite the default
configuration - /usr/local/etc/openser/openser.cfg.

MULTI-LATERAL PEERING WITH OPENSER STEP 5. RUN OPENSER

PAGE 10

cp modules/osp/etc/sample-osp-openser.cfg /usr/local/etc/openser/openser.cfg

The only parameter that must be configured in the openser.cfg is the location of a peering server.
Edit the file and update the value of “sp1_uri" parameter to indicate the URL of the peering server.
Configuring the “sp2_uri” parameter to load share and add redundancy with a second peering server
is recommended. Two other parameters which are recommended for editing are “device_ip” and
“token_format”. More details on these parameters are provided in the sample-osp-
openser.cfg file. Appendix 1 provides detail on all OSP peering module parameters.

An additional tuning adjustment for optimizing OpenSER is to decrease the number of TCP
synchronization retries made by the Linux operating system when a TCP connection fails. Setting this
parameter to 0 or 1 will decrease post dial delay when a TCP connection to a destination peer is not
possible. Reducing TCP synchronization retries by the operating system will speed call fail-over to the
next destination peer. To change this parameter, open the file /etc/sysctl.conf and add the
entry net.ipv4.tcp_syn_retries = 1. Reboot the computer and check the parameter entry
was accepted by typing cat /proc/sys/net/ipv4/tcp_syn_retries. It should display "1".

Step 5. Run OpenSER

Running OpenSER requires root privileges. To start the OpenSER, use the following command

openser-1.0.0/rpm/openser.init start

To stop the OpenSER, use the following command

openser-1.0.0/rpm/openser.init stop

Frequently Asked Questions

This section includes common questions about the OSP peering module with OpenSER along with
answers. If your question was not answered here, please submit your question to the OSP mailing list
at www.sipfoundry.org or e-mail support@transnexus.com.

Where are OSP peering module log messages written?
Log messages are sent to the sys-log application and will be logged according to the logger’s
configuration. Look for the messages in the /var/log/messages file.

Can multiple instances of OpenSER be run on the same machine?
It is possible to run more than one OpenSER on the same computer. The simplest way is to create a
second openser.cfg and edit the port number from 5060 to a different port number. When starting
the second OpenSER, instead of using the rpm/openser.init script, explicitly specify where the
configuration file is using the –f config-file.openser flag. If the second OpenSER requires a

MULTI-LATERAL PEERING WITH OPENSER FREQUENTLY ASKED QUESTIONS

PAGE 11

different set of certificates, uncomment and update the “private_key”, “local_certificate” and
“ca_certificate” variables in the configuration file.

Can I use both TCP and UDP for communication?
OpenSER supports both UDP and TCP. A peering response does not explicitly indicate which
transport protocol to use for communicating to the terminating SIP proxy or user agent. By default,
OpenSER uses to UDP. Insure that the terminating proxy or UA is defined on the peering server as a
SIP device. This will instruct the peering server to use a compressed peering token, small enough to fit
into a single UDP packet.

How is OSP authentication different from password or access list authentication?
The OSP peering module implements Public Key Infrastructure (PKI) services to securely authenticate
and authorize peer to peer calling among SIP proxies. If the SIP INVITE received by OpenSER
includes a peering authorization token, the OSP peering module will validate the peering token was
digitally signed by the OpenSER’s peering authority. If the token is valid the OpenSER will accept the
call. If not, OpenSER will reject the call.

The OSP peering module uses the public key of its peering authority to verify that its peering authority
signed the peering token (standard asymmetric cryptography). When compared to access lists or
passwords for peer to peer authentication and authorization, PKI services offer improved security and
scalability. Passwords, shared secrets or symmetric keys are prone to security breaches. Access lists
have limited scalability. Managing an access list that contains hundreds of addresses and changes
frequently is a major operations challenge. Secure peering using PKI services eliminates these
limitations.

Why is time synchronization with the OSP peering server important?
Peering authorization tokens have a limited life – usually five minutes. If the time of day of OpenSER
differs by more than five minutes from its peering server, peering tokens from SIP INVITES received
from other peers will be invalid and calls will be rejected. The simple solution is for all peers to use
Network Time Protocol (ntp) to maintain time synchronization.

MULTI-LATERAL PEERING WITH OPENSER APPENDIX 1 - OSP PEERING MODULE PARAMETERS

PAGE 12

Appendix 1 - OSP Peering Module Parameters

This Appendix provides a detailed explanation of all OSP peering module parameters that may be
included in the openser.cfg file. Information on OSP peering module functions can be found in the
"OSP Module for Secure, Multi-Lateral Peering" document located at:
http://www.openser.org/docs/modules/1.1.x/osp.html.

sp1_uri, sp2_uri
These string parameters define peering servers to be used for requesting peering authorization and
routing information. sp1_uri must be configured. sp2_uri is required only if there are two peering
servers. Each peering server address takes the form of a standard URL, and consists of up to four
components:

• An optional indication of the protocol to be used for communicating with the peering server.
Both HTTP and HTTP secured with SSL/TLS are supported and are indicated by "http://"
and "https://" respectively. If the protocol is not explicitly indicated, the OpenSER defaults
to HTTP secured with SSL.

• The Internet domain name for the peering server. An IP address may also be used, provided it
is enclosed in square brackets such as [172.16.1.1].

• An optional TCP port number for communicating with the peering server. If the port number is
omitted, the OpenSER defaults to port 1080 (for HTTP) or port 1443 (for HTTP secured with
SSL).

• The uniform resource identifier for requests to the peering server. This component is not
optional and must be included.

Examples:
modparam("osp", "sp1_uri", "http://osptestserver.transnexus.com:1080/osp")
modparam("osp", "sp2_uri", "https://[1.2.3.4]:1443/osp")

device_ip
device_ip (string) is a recommended parameter that explicitly defines the IP address of OpenSER in
an peering request message (as SourceAlternate type=transport). The IP address must be in brackets
as shown in the example below.

Example:
modparam ("osp", "device_ip", "[1.1.1.1]")

token_format
When OpenSER receives a SIP INVITE with a peering token, the OSP peering module will validate the
token to determine whether or not the call has been authorized by a peering server. Peering tokens
may, or may not, be digitally signed. The token format (integer) parameter defines if OpenSER will
validate signed or unsigned tokens or both. The values for token format are defined below. The
default value is 2.

 0 - Validate only signed tokens. Calls with valid signed tokens are allowed.
 1 - Validate only unsigned tokens. Calls with valid unsigned tokens are allowed.
 2 - Validate both signed and unsigned tokens are allowed. Calls with valid tokens are allowed.

Example:
 modparam ("osp", "token_format", 2)

MULTI-LATERAL PEERING WITH OPENSER APPENDIX 1 - OSP PEERING MODULE PARAMETERS

PAGE 13

private_key
local_certificate
ca_certificates
These parameters identify crypto files are used for validating peering authorization tokens and
establishing a secure channel between OpenSER and a peering server using SSL. The files are
generated using the 'Enroll' utility from the OSP Toolkit. By default, the proxy will look for pkey.pem,
localcert.pem, and cacart_0.pem in the default configuration directory. The default config
directory is set at compile time using CFG_DIR and defaults to /usr/local/etc/ser/. The files
may be copied to the expected file location or the parameters below may be changed.

Example: If the default CFG_DIR value was used at compile time, the files will be loaded from:
modparam("osp", "private_key", "/usr/local/etc/openser/pkey.pem")
modparam("osp", "local_certificate","/usr/local/etc/openser/localcert.pem")
modparam("osp", "ca_certificates", "/usr/local/etc/openser/cacert_0.pem")

sp1_weight, sp2_weight
These sp_weight (integer) parameters are used for load balancing peering requests to peering
servers. These parameters are most effective when configured as factors of 1000. For example, if
sp1_uri should manage twice the traffic load of sp2_uri, then set sp1_weight to 2000 and
sp2_weight to 1000. Shared load balancing between peering servers is recommended. However,
peering servers can be configured as primary and backup by assigning a sp_weight of 0 to the
primary server and a non-zero sp_weight to the back-up server. The default values for sp1_weight
and sp2_weight are 1000.

Example:
modparam ("osp", "sp1_weight", 1000)

device_port
The device_port (string) parameter is an optional field which includes the SIP port being used by
OpenSER in the peering request (as SourceAlternate type=network) to the peering server. If is not
configured, this information is not included in the peering request. This field is useful if multiple
OpenSERs are running on the same Linux computer since it enables the peering server to administer
different peering policies based on different SIP proxies.

Example:
modparam ("osp", "device_port", "5060")

enable_crypto_hardware_support
The enable_crypto_hardware_support (integer) parameter is used to set the cryptographic
hardware acceleration engine in the openssl library. The default value is 0 (no crypto hardware is
present). If crypto hardware is used, the value should be set to 1.

Example:
modparam ("osp", "enable_crypto_hardware_support", 0)

ssl_lifetime
The ssl_lifetime (integer) parameter defines the lifetime, in seconds, of a single SSL session key. Once
this time limit is exceeded, the OSP peering module will negotiate a new session key. Communication
exchanges in progress will not be interrupted when this time limit expires. This is an optional field with
default value is 200 seconds.

MULTI-LATERAL PEERING WITH OPENSER APPENDIX 1 - OSP PEERING MODULE PARAMETERS

PAGE 14

Example:
modparam ("osp", "ssl_lifetime", 200)

persistence
The persistence (integer) parameter defines the time, in seconds, that an HTTP connection should be
maintained after the completion of a communication exchange. The OSP peering module will maintain
the connection for this time period in anticipation of future communication exchanges to the same
peering server.

Example:
modparam ("osp", "persistence", 1000)

retry_delay
The retry_delay (integer) parameter defines the time, in seconds, between retrying connection attempts
to an OSP peering server. After exhausting all peering servers the OSP peering module will delay for
this amount of time before resuming connection attempts. This is an optional field with default value is 1
second.

Example:
modparam ("osp", "retry_delay", 1)

retry_limit
The retry_limit (integer) parameter defines the maximum number of retries for connection attempts to
an peering server. If no connection is established after this many retry attempts to all peering servers,
the OSP peering module will cease connection attempts and return appropriate error codes. This
number does not count the initial connection attempt, so that a retry_limit of 1 will result in a total of two
connection attempts to every peering server. The default value is 2.

Example:
modparam ("osp", "retry_limit", 2)

timeout
The timeout (integer) parameter defines the maximum time in milliseconds, to wait for a response from
an peering server. If no response is received within this time, the current connection is aborted and the
OSP peering module attempts to contact the next peering server. The default value is 10 seconds.

Example:
modparam ("osp", "timeout", 10)

max_destinations
The max_destinations (integer) parameter defines the maximum number of destinations that
OpenSER requests the peering server to return in a peering response. The default value is 5.

Example:
modparam ("osp", "max_destinations", 5)

validate_call_id
The validate_call_id (integer) parameter instructs the OSP peering module to validate call id in
the peering token. If this value is set to 1, the OSP module validates that the call id in the SIP INVITE
message matches the call id in the peering token. If they do not match the INVITE is rejected. If this
value is set to 0, the OSP module will not validate the call id in the peering token. The default value is 1

Example:
modparam ("osp", "validate_call_id", 1)

