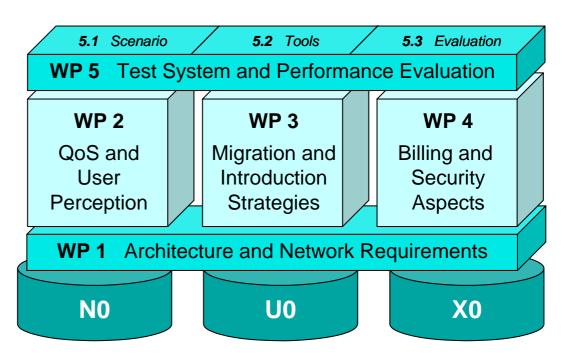


OpenSER IMS

Joachim Fabini

Institute of Broadband Communications Vienna University of Technology



Agenda

- IMS-related projects at ftw.
- CAMPARI IMS Testbed Architecture
- Services and Enablers
- IMS and XoIP Perspectives
- Conclusion

Telecommunications Research Center Vienna (ftw.)

- CAMPARI
 - Configuration, Architecture, Migration, Performance Analysis and Requirements of 3G IMS
- Project description: application-oriented project
- Duration: 2004/10 2006/08
- Project volume: 100 pm
- Participants:
 - ftw.
 - Alcatel Austria
 - Kapsch CarrierCom
 - mobilkom austria
 - TU Wien (IBK)

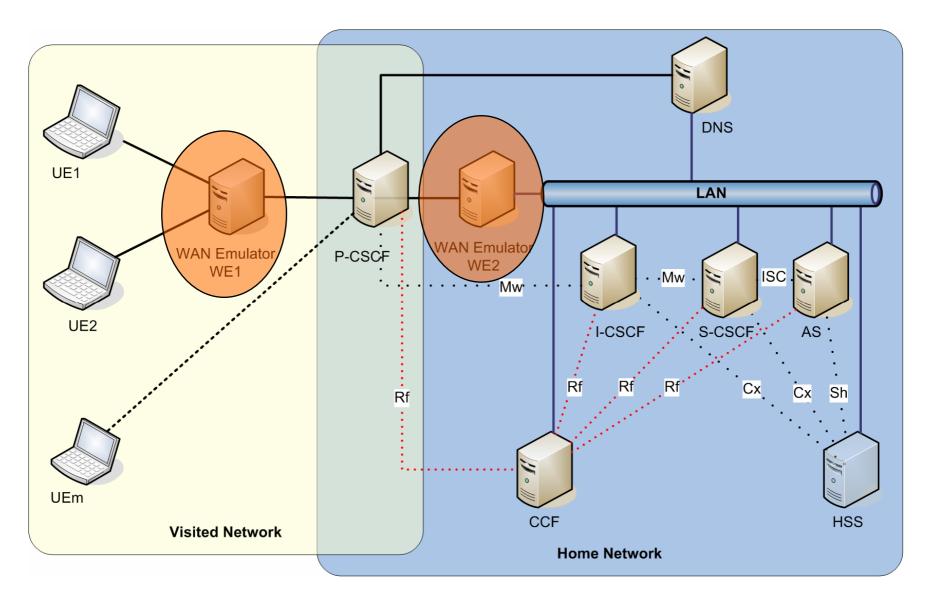
IMS-related Projects at FTW

SIMS

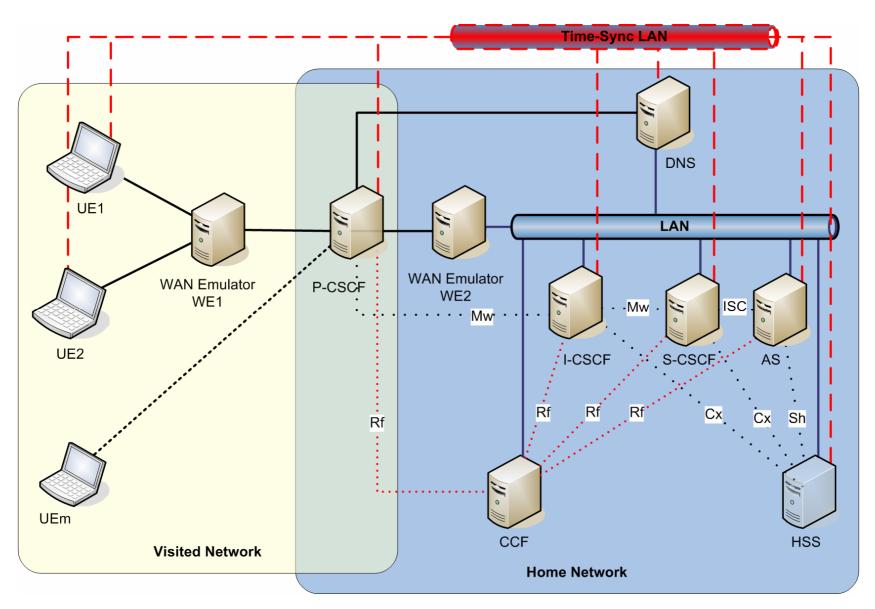
- "Services in IMS"
- Duration: 2005/01 2006/09
- Participants
 - ftw, mobilkom austria, Kapsch CarrierCom, Alcatel Austria, TU Wien
- Project volume: 57 pm
- Focus: IMS Service Architecture

CAIPIRINA

- "Converging towards All-IP:
 IMS Realization Issues for NGN Applications"
- Duration: 2006/10 2008/03
- Participants
 - ftw, mobilkom austria, Kapsch CarrierCom, Alcatel Austria, TU Wien
- Project volume: 96 pm
- http://www.ftw.at/ftw/research/projects


IMS: IP Multimedia Subsystem

- Standardised by 3rd Generation Partnership Project (http://www.3gpp.org/)
 - First IMS-Release Rel5
 - Rel6, Rel7, Rel8
- All-IP overlay network architecture
 - Covers access, core
 - Access-independent
 - Reuses IETF-standardised protocols for signaling and media
 - SIP, Diameter, RTP,...
 - Promises end-to-end QoS
- Signaling Components
 - CSCF: Call-Session Control Function
 - SIP proxies implementing specific IETF SIP extensions


CAMPARI IMS Testbed Requirements

- Focus on "Minimal optimal" IMS testbed
 - "Small is beautiful". How much IMS do we need?
 - Implementation robustness of minor importance
- Requirements
 - Script-configurable
 - Extendable, scaleable
 - Implemented parts should be standard-compliant
- Target: Emulate different IMS scenarios
 - Visited vs. Home GGSN scenario
 - IPv4 and/vs IPv6, TCP vs. UDP vs. SCTP vs. DCCP
 - Charging Interfaces
 - QoS
 - Deploy Services

CAMPARI IMS Testbed

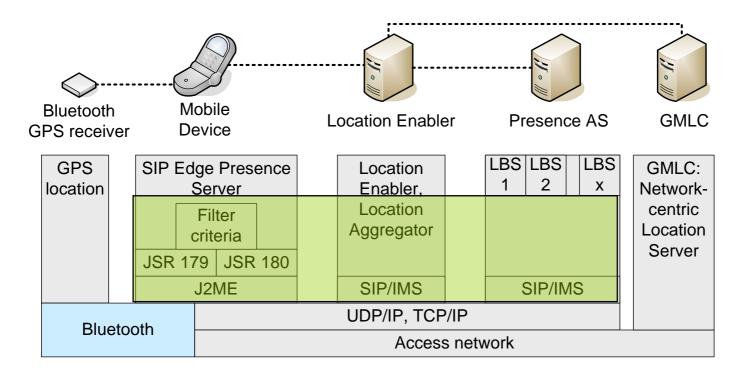
IMS Testbed: Time Synchronisation

IMS Testbed Features

- No new modules
 - All OpenSER extensions implemented based on AVPs
- SIP extensions
 - 3GPP Headers (RFC 3455), Path (RFC 3327), Service Route (RFC 3608),
- IFCs
 - Currently very basic, MySQL-based
- Offline Charging
 - Java application implements Rf interface
 - OpenSER Diameter module
- "IMS in a Bottle"
 - Feasibility Study: Complete Originating and Terminating IMS network running on one single PC (VMware)

IMS Testbed Details

- IMS Traffic Generator
 - SIPp enhanced with Pre- and Post-Scenarios
 - Can be used for IMS and for plain SIP
- Time Synchronisation
 - All IMS Nodes equipped with additional Ethernet interface for relative time synchronisation (50µs accuracy)
 - Dedicated time synchronisation LAN
 - Used exclusively for time synchronisation traffic
 - Bypasses WAN Emulators
 - OpenSER log module implementation changed for microsecond precision, syslog facility
 - Enables offline-correlation of IMS node-local log files
- KPhone extensions
 - SIM-based authentication


Content

- IMS-related projects at ftw.
- CAMPARI IMS Testbed Architecture
- Services and Enablers
- IMS and XoIP Perspectives
- Conclusion

Service Enabler

- Enabler: Generic Service, Middleware
 - To be used by other **services**
 - Horizontal service architecture
 - 3GPP examples: Presence, PTT, IM
- Client-Centric IMS Location Enabler
 - Reason: network-centric location mechanisms not sufficiently accurate
 - "Terminal knows best where it is located".
 - Accuracy depends on location mechanism implemented within mobile device (e.g. Bluetooth+GPS, WLAN+DHCP).
 - "Location is just another kind of presence".
 - "I am in my office" or
 - "Position is <N 48°12'27,3"; E 16°22'30,3", Radius:15m>

Client-Centric Location Enabler

- Accurate and cost-effective location mechanism
- Fully functional protype
 - Symbian S60 3rd ed. Mobile, BEA WebLogic, Google Maps
- Specified for, but not restricted to IMS
- Ongoing standardisation work
 - IETF Draft, 3GPP proposal

Content

- IMS-related projects at ftw.
- CAMPARI IMS Testbed Architecture
- Services and Enablers
- IMS and XoIP Perspectives
- Conclusion

Factors that drive Telecom development

- Four factors for Telecom Technology success
 - Simplicity (user friendliness):
 - Will technology ever become more user-friendly than telecom in 1900?
 - Think about Mobile Phone SIP client configuration...
 - IMS can help, even multiple identities stored on ISIM
 - VoIP operators should take Skype as an example
 - Mobility: Enabled GSM success
 - Cost: Is currently driving XoIP development
 - **Service Integration**: Do we have any services that force users to decide in favour of XoIP and/or IMS?

Customer

- Mobility & service quality at reasonable cost.
- Underlying networking infrastructure does not matter.
- Technical QoS vs. QoE (Quality of Experience)
 - Mapping between these two metrics far from trivial
 - What if agreed QoS can not guarantee user-expected QoE?

All-IP and Horizontal Service Architecture

- Traditional telephony
 - Bundle: Service (Voice) and Access Network (Wiring)
- IP enables separation of Services and Access
 - Voice becomes just one service among others
 - IP Access is easily interchangeable (Bit-Pipe-Providers)
 - Services are the key to differentiation
- But: All-IP does NOT mandatorily enforce a horizontal service architecture
 - VoIP mobility requires standardised mechanisms for technology-independent L2-handover (IEEE 802.21)
 - Enablers ("meta-services") must implement generic, standardised interfaces, accessible by other services.
 - Are free XoIP standards too open?
 - Many problems show up only during INTEGRATION

IMS Perspectives

- Community view: IMS threatens plain (IETF) XoIP
 - "Bloated", "too complex", "enforces centralised operator control", etc.
- Operator view
 - 3G licensed wireless frequency spectrum is expensive
 - Maintaining CS and PS network in parallel expensive, too
- Neutral view on customer experience: mobility
 - Mobile operators can create Mobile XoIP infrastructure
 - Real-time IP traffic mobility requires L1/L2 interaction
 - Who else can implement and finance infrastructure?
 - OR: Do customers accept a "downgrade" from mobile CS voice to PS no(madic) mobility? Why should they? Cost?
 - Unlikely that "bitpipe-providers" (both, fixed and mobile) will disappear from the market
 - If IMS providers can offer better quality at lower cost than free VoIP why not accept the offer?

Conclusion: XoIP and IMS Perspectives

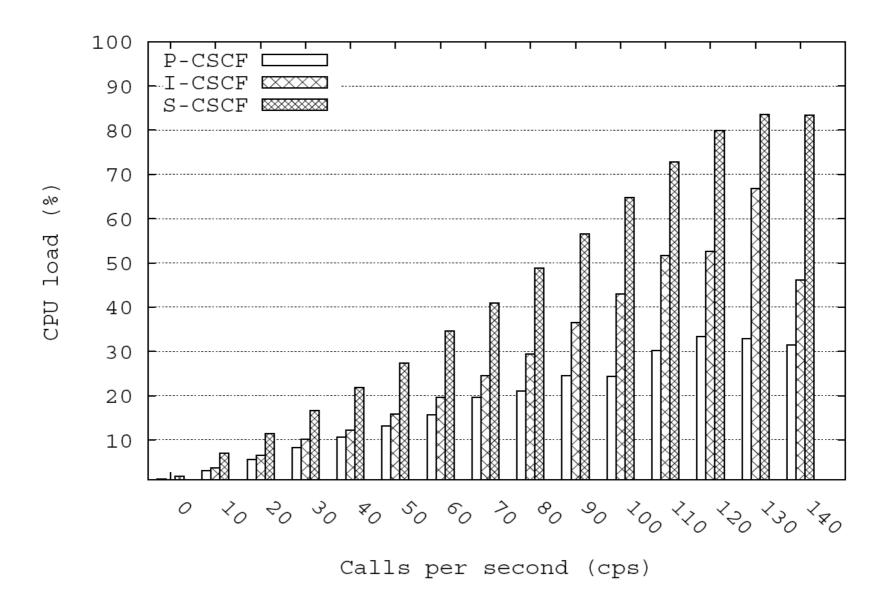
- IMS and "free" XoIP target different audience
 - Both technologies share main signaling part: SIP
 - Advances of one may support the other (mobility)
 - Most likely scenario: co-existence
- GSM development and evolution
 - Remember GSM "mobiles" 20 years ago?
 - Size, weight, battery lifetime, coverage
 - Customers were ready to accept low(er) voice quality in change of mobility
 - What can XoIP and IMS offer more than mobile CS technology?
- The future will show whether
 - We find services that make users switch to XoIP
 - Service integration can cause a technology change

Thank you

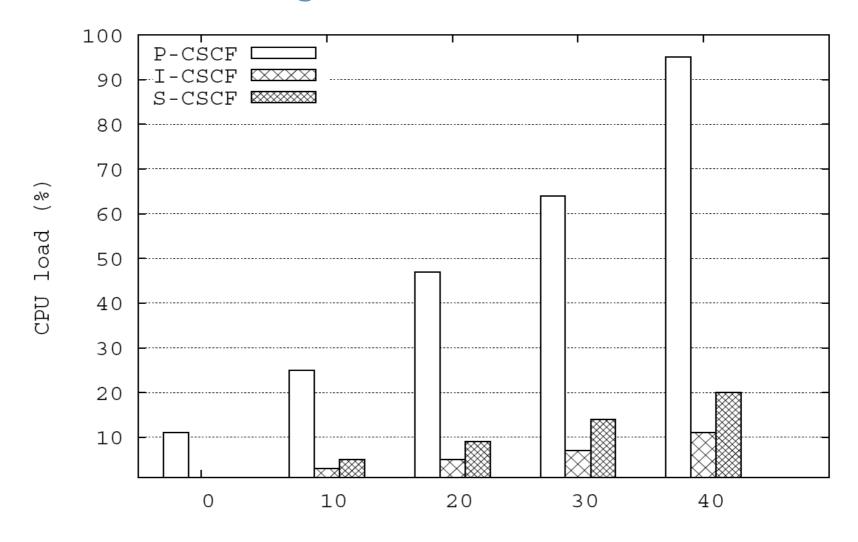
Contact:

Institute of Broadband Communications

Favoritenstraße 9/388 A-1040 Vienna

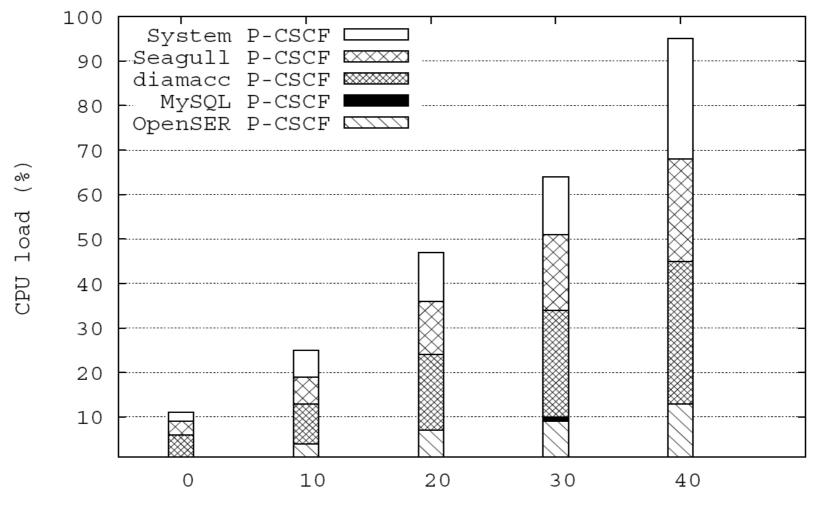

tel: +43-1-58801-38813 fax: +43-1-58801-38898

joachim.fabini@tuwien.ac.at http://www.ibk.tuwien.ac.at

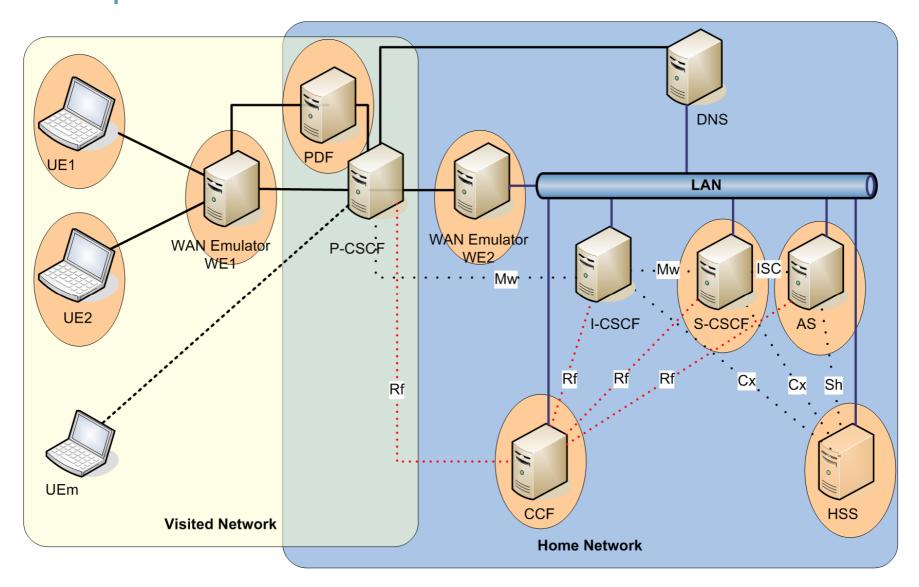

Dipl.-Ing. Joachim FABINI

University Assistant

Backup Slide: IMS Testbed CPU Load



Backup Slide: Performance: IMS Testbed CPU Load (Accounting enabled)


Calls per second (cps)

Backup Slide: Performance: IMS P-CSCF CPU Load (Accounting enabled)

Calls per second (cps)

Backup Slide: IMS Future Testbed: Affected components

Backup Slide: Reasons (not) to switch to VoIP or IMS?

- Circuit Switched Telephony
 - CS voice is working perfectly
 - Mobile and Fixed Networks
 - Roaming aspects
 - GSM raises high user expectations on NGN performance
 - Mobility and Coverage, including roaming
 - Voice quality
 - Costs
- Fixed-Mobile Convergence
 - XoIP technologies what do they converge to?
 - SIP, H.323, Skype, ...
 - Interoperability and revenue generator: CS telephony