

OpenSER – the open SIP Server

Bogdan-Andrei Iancu CEO Voice System Co-Founder OpenSER Project

About OpenSER

- OpenSER is an open source, GPLed SIP server with
 - High scalability (up to thousands of calls per second of transactional throughput on a PC)
 - Effective application building (modules and application interface)
 - High flexibility (routing language)
- OpenSER is a multi-functional, multi-purpose SIP server: router, switch, registrar, application server, redirect server, gateway, etc
- OpenSER is only about signaling, but there are media adds-on
- it is not a PBX that's Asterisk!

- UNIX-like : IPv4/IPv6 : UDP/TCP/TLS
- NAT traversal
- Extended DB support (Mysql, Postgres, Oracle, etc)
- RADIUS & DIAMETER for AAA
- Security & DOS protection
- Advanced Routing: CPL, OSP, LCR, ENUM
- Gateways: SMS, XMPP, Jabber
- Support for clustering and HA

OpenSER is a public project based on collective effort

- 80% of the project is sustained by Voice System
- large number of developers :
 - 3 core developers
 - 22 main developers
 - ~30 developers
 - ~150 contributers
- worldwide community of users
- OpenSER Summit at VoN Berlin, November 2006
- plans for developer's meeting in Paris, June 2007

OpenSER can be shaped to run on almost any kind of device:

- embedded devices (routers, firewall, access points)
 - Soma Networks
- medium-size devices
 - Collax
- large architectures (servers, clusters)
 - Cisco OpenSER is the SIP proxy of Cisco Service Node for Linksys One

- SIP service providers
 - 1und1, voip-users, babble.com, Arcor
- hosting & white label solutions
 - Voztelecom
- routing & trunking providers
- termination & GW providers
- solution providers
 - Voice System
- integrators
 - Basis AudioNet
- academic institutions
 - MIT,UNC, INRIA, SWITCH

- no vendor trap
- faster development cycle
- split work between parties
- easy synchronization with the main stream by contributions ⇒ unified effort for development
 - Voice System (Presence, XMPP, IM Conference, DNS adds-on)
 - Collax (perl scripting support)
 - Voztelecom (Application Agent)
 - SomaNetworks (Session Timer)
 - Trans Nexus (OSP)
 - Enum.at (Infrastructure Enum, Domain policy)
- performance and flexibility

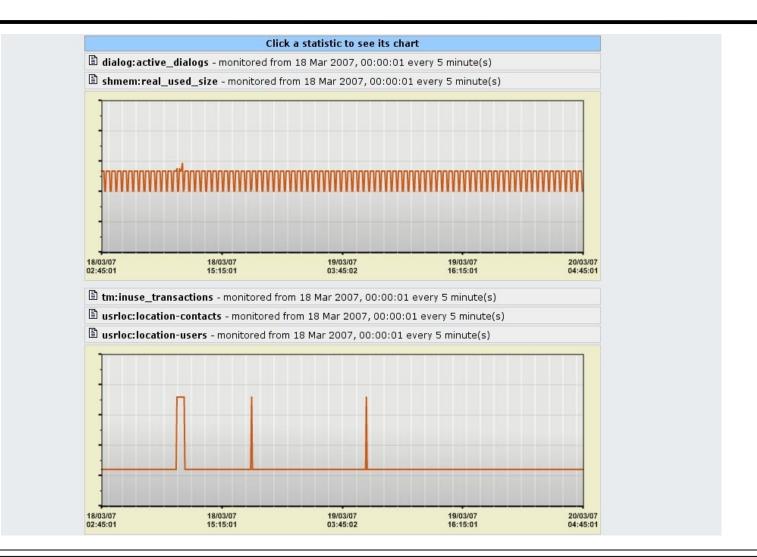
OpenSER v1.2.0

Presence and Simple

- modular design for presence
 - one presence engine
 - several (specialized or not) components to inject presence information
- this design enables:
 - presence support for non-SIP entities
 - publish the CPU usage of your desktop
 - publish weather information
 - publish the stock size from your store
 - presence support for old SIP phones
 - easy creation for custom/complex presence extensions
 - BLA/SLA
 - dialog presence
- instant messaging conferencing (IRC style)

Presence from Non-SIP device

Management Interface


- pull support for internal statistics
- push support for external commands
- different communication layers (local and remote; Ex: xmlrpc)
- easy to integrate in any external applications (web, shell, perl, etc)

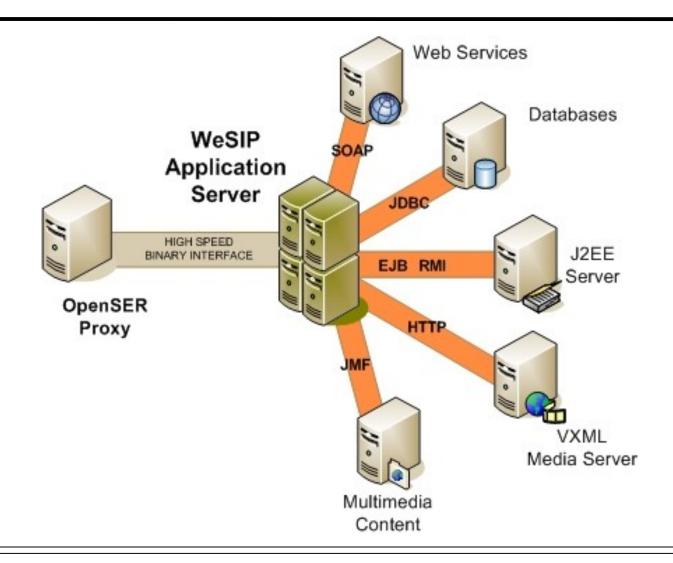
SNMP support

- built in AgentX subagent for pulling data directly from OpenSER
 - uses standard SIP MIBs
 - OpenSER specific MIBS were added
- offer ideal hook for traditional SNMP-based platforms
- this was an external contribution

Statistic charts

Application Server

A more complex configuration:


- a separate logical Application Server to be used
- OpenSER reused as SIP stack and transaction engine
- Standalone Application Server (weSIP-www.wesip.eu)
 - implements SIP servlets (in Java)
 - uses a connector to talk to OpenSER
 - offers an ideal base for building SIP application with high complexity without dealing with the low details of the SIP part
- Perl programming interface
 - triggering PERL scripts from the openser config file
 - similar to Asterisk AGI

Benefits?

- use a robust and fast SIP implementation
- easy and fast creation of high level SIP applications (like PBX)

weSIP architecture

built-in XMPP gateway for instant messaging

- transparent translation
- chat with GoogleTalk® or Jabber buddies
- flexible routing based on DNS (protocol discovery based on NAPTR)
- join IM conferencing on XMPP servers
- presence (upcoming)
 - SIMPLE XMPP rich presence translation
 - · sub-status mapping
- voice (future)
 - only at signaling level ?!
 - avoid keeping translation states

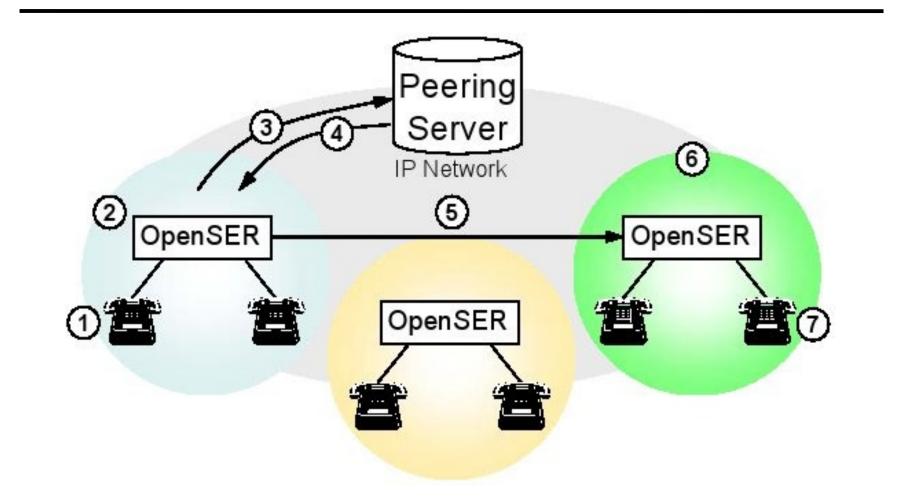
Security with OpenSER

Secure Peering

TLS

- encryption at transport level
- authentication and peering policies via certificates
- flexible, but still low level feature

OSP


- no encryption
- authentication and validation
- a higher level of standardization for usage
- eliminates burdensome bilateral peering agreements

Domain Policy

- no encryption, no authentication, no validation
- flexible engine for defining federation memberships and interdomain routing policies
- based on DNS

OSP-based peering

Authentication & authorization

- DIGEST authentication
- IP authentication (not really secure for UDP)
- ACL support

DOS detection

- dynamic monitoring of SIP traffic to detect DOS attacks (mainly based on flood)
- self protection mechanism

IP blacklists

- static or dynamic lists containing forbidden destinations
- lists can be activated based on the type of destination (Gws, subscribers, Media servers, etc)

Convergence & Distribution

Convergence versus Distribution

The explosive development and deployment of VoIP force different - even opposite, in many cases - approaches at each conceptual level.

- at service level, the key word is convergence
 - fix mobile convergence
 - peering heterogeneous IP networks
 - unified messaging
- at architectural level, the key word is distribution.
 - geographic
 - failover
 - scalability

To get them all in a single solution, you need to rely on a cooperative underlying software, like OpenSER

peering heterogeneous networks

- focus on XMPP (Jabber/GoogleTalk)
- IM already there
- coming presence and voice
- facilitate fixed mobile convergence
 - mobile VoIP
 - based on new generation of "smart" phones
 - handover between SIP and GSM we still need a bit of cooperation from the phones
 - detection can be at signalling or media level
- unified messaging
 - web/email integration
 - SMS gateway
 - SMPP gateway/integration

types of distributions

- scaling reasons
 - load-balancing
 - traffic dispatching
 - distributed user location
- high-availability reasons
 - dns-based failover
 - fault detection based on traffic
 - synchronization support
- geographical distribution reason
 - complex routing for managing remote components
 - centralized decisional logic, but local/distributed processing

Thanks for your attention You can find more at www.openser.org

Questions are welcome