
OpenSER Admin Course
 Security in OpenSER

Voice System SRL

http://www.voice-system.ro

http://www.openser.org

http://www.voice-system.ro/
http://www.openser.org/

© Voice System SRL - OpenSER Admin Course 2

Security mechanisms

 IP authentication for known hosts (not 100% reliable)

 check and authentication user to prevent spam

 don't allow not-authenticated anonymous calls, only
authenticated requests from local users allowed

 don't allow direct access to critical resources (gateways, media
servers)

 anti-flood detection via pike

 calls from foreign domain should be always considered untrusted
unless via secure channel (TLS)

© Voice System SRL - OpenSER Admin Course 3

SIP authentication with OpenSER

© Voice System SRL - OpenSER Admin Course 4

SIP authentication

 www digest authentication
 IETF RFC2617
 challenge response paradigm

 send non-authenticated request
 server replies with challenge
 send authenticated request
 server accepts or rejects authentication

 registration authentication (end-point)
 www-authorize

 call authentication (relay)
 proxy-authorize

 the auth* modules in OpenSER
 against database, radius or diameter

© Voice System SRL - OpenSER Admin Course 5

SIP authentication

 Protocol:
 challenge-response using

MD5
 Based on secret shared

between client and server
 No message integrity

provided

1. REGISTER

2. 407 Challenge
(nonce,realm)

3. REGISTER
w/credentials

1. Request w/o
credentials

2. Challenge:
authenticate
yourself

3. Request
resubmitted
w/credentials

4. OK

© Voice System SRL - OpenSER Admin Course 6

Best practices

 why to authenticate?
 verifying user identify is the foundation of all other services and

checks (ACLs, profile, attributes, etc)
 this security check combines with other types of checks (during

registration, check also the validity of the uploaded information)

 what to authenticate?
 all requests pretending to come from one of yours subscriber
 it is a good practice to authenticate both initial and sequential

requests, but there are devices yet not supporting authentication
within the dialog

© Voice System SRL - OpenSER Admin Course 7

Best technics

 what kind of backend to use?
 the backend may be required by integration restrictions
 you can use multiple backend in parallel for different

domains/classes of subscribers

 the authentication check may fail due multiple causes
 depending of the backend, the check may report the cause of the

failure:
• subscriber does not exist

• invalid password

• expired nounce
 based on failure code, take the appropriate action from script (like

do not try to challenge if the subscriber does not exist)

© Voice System SRL - OpenSER Admin Course 8

Modules

 auth
 common frame for authentication
 provides functionalities for auth challenge and nonce management

 auth_db
 authentication check against database

 auth_radius
 authentication check against a RADIUS server

 auth_diameter
 authentication check against a DIAMETER server

© Voice System SRL - OpenSER Admin Course 9

DB backend

 subscribers are stored in DB
 password may be store in plain text (insecure) or in a pre-

computed format (HA1)
 modparam("auth_db", "password_column", "password")
 versus
 modparam("auth_db", "calculate_ha1", 1)
 modparam("auth_db", "password_column", "ha1")

 authentication means checking the user profile (password) in DB
and. in most scenarios, we need more than only the password:
 OpenSER provides a mechanism to configure a custom set of

attributes to be loaded from DB during the authentication process
 advantage: reduce the number of DB hits

 modparam("auth_db", "load_credentials",
 "$avp(i:12)=rpid; $avp(i:14)=email_address")

© Voice System SRL - OpenSER Admin Course 10

Radius backend

 passwords and subscriber data is fetched from a RADIUS server
 requires a radius client library to compile against

 lib radius client
 freeradius

 the authentication check is done by the RADIUS server; openser
does only the challeng part.

 there is a similar (as for DB) support for fetching additional
attributes during authentication, but in this case, the logic is on
the RADIUS server side – it decides what extra data to send.

© Voice System SRL - OpenSER Admin Course 11

Showcase

Script example

© Voice System SRL - OpenSER Admin Course 12

Credentials protection

© Voice System SRL - OpenSER Admin Course 13

Nonce protection

 the nonce generated by OpenSER contain a lifetime – if it is
expired, it will not be accepted

 modparam("auth", "nonce_expire", 100)

 as shorter is the lifetime, as smaller is the probability of a client
to reuse/fake the nonce

 even so, OpenSER cannot check if a nonce was used more than
once during its lifetime.

© Voice System SRL - OpenSER Admin Course 14

Credential checking..

REGISTER sip:siphub.net.org SIP/2.0
From: <sip:alice@siphub.net>;tag=c775
To: <sip:alice@siphub.net>
Authorization: Digest username="bob",

realm=“siphub.net.de", algorithm="md5",
uri="sip:siphub.net",
nonce="3edab81b7a8427be362c2a924f3171d215a8
f7d3",
response="4a868f9cbffd2b1f39c778abca78f75b"

 Cheating attempt: user “bob” with tries to register as user
“alice”

 To do so, the cheater submits proper bob’s credentials but
uses alice’s address of record in To header field

 Registrar must enforce a policy that links digest identity to
permissible addresses of records

© Voice System SRL - OpenSER Admin Course 15

...Credential checking...

 as the SIP specs allow usage on different SIP ID and Auth ID
during authentication, it the responsibility of the platform
implementer to do the logic mapping

 What SIP ID is allow a specific Auth ID?? - use the “uri_db”
module to define the mapping.
 in most of the case there is a 1 to 1 mapping
 if a Auth ID can be used by several SIP Ids, that create the mapping

in the “uri” table

 then use the check functions:
 # if REGISTER request

 if (check_to()) {...}

 # if other request

 if (check_from()) {...}

© Voice System SRL - OpenSER Admin Course 16

...Credential checking

 1 to 1 mapping

 modparam(“uri_db”,”use_uri_table”, 0)
 auth realm must be the same as the From/To domain

 n to 1 mapping

 modparam(“uri_db”,”use_uri_table”, 1)
 auth realm still must be the same as the From/To domain

+----+--------------+------------+-----------+----------------------------+
 | id | username | domain | uri_user | last_modified |
+----+--------------+------------+-----------+----------------------------+
 | 1 | auth1 | sip.com | sip1 |0000-00-00 00:00:00|
 | 2 | auth1 | sip.com | sip2 |0000-00-00 00:00:00|
+----+--------------+------------+-----------+----------------------------+

© Voice System SRL - OpenSER Admin Course 17

Showcase

Script example

© Voice System SRL - OpenSER Admin Course 18

IP Black lists

© Voice System SRL - OpenSER Admin Course 19

Problem

 when the script does request forwarding, the destination's IP still
may be to discover

 Example:
 seturi(“sip:user@voip.domainX.com”);
 t_relay();

 solving the destination via DNS (NAPTR, SRV, A) is does after
the last script intervention

 ⇒ final IP destination cannot be checked from the script

 ⇒ security bridge

mailto:user@voip.domainX.com

© Voice System SRL - OpenSER Admin Course 20

Solution

 define lists of IPs to be blocked for relaying

 ⇒ IP black lists
 depending of the destination you determined via script, apply

different IP blacklists in order to be sure that the request does not
get relayed to a protected IP (via DNS).

Example:
 define a blacklist with the IP address(es) of the PSTN gateway
 if you do a relay based on user location, that activate the blacklist

in order to prevent DNS based routing to IP's of the GWs
 if you do relay to a the GWs, do not apply the blacklist as the IPs

are allowed in this case.

© Voice System SRL - OpenSER Admin Course 21

IP blacklist definition

 global parameter in the configuration script:

 blacklist name

dst_blacklist=test1:{(any , 113.135.101.26 , 0 , "^MIN-SE:")}

 protocol (udp,tcp,tls,any) port (0=any)

 IP address regexp against the
 outgoing request

Example:

dst_blacklist=bl_tls:{(tls , 127.0.0.1 , 5060 , ""),(tls , 192.168.2.7 ,
5061 , "^X-auth:")}

dst_blacklist=bl_gw:{(any , 192.168.2.10 , 0 , "")}

© Voice System SRL - OpenSER Admin Course 22

How to use it?

 before doing request relay, just select which blacklist should
apply:

 use_blacklist(“bl_gw”);

 can be used multiple time to set more than one blacklist
 the set lists will be automatically reset at the end of the script

 the requests that hits a blacklist will be automatically rejected by
a “473 Destination Filtered” with no failure route triggering

© Voice System SRL - OpenSER Admin Course 23

DNS black list

 automatic black listing based on DNS failover
 when a IP destination is unavailable, it is temporary blacklisted as a

self protection mechanism (Ex: tcp setup to an unresponsive host
may temporary block a process)

 the reasons for blacklisting:
• error at transport layer (TCP only supported)

• error at SIP layer (timeout with no response, 5xx class reply)
 it may be combine with dns_failover – if a destination failed, dns

will be used to provide an alternative (if any)

 enabled via global parameter
disable_dns_blacklist = no

 when enabled, it is used all the time

© Voice System SRL - OpenSER Admin Course 24

Showcase

Script example

