
OpenSER Admin Course
 Security in OpenSER

Voice System SRL

http://www.voice-system.ro

http://www.openser.org

http://www.voice-system.ro/
http://www.openser.org/

© Voice System SRL - OpenSER Admin Course 2

Security mechanisms

 IP authentication for known hosts (not 100% reliable)

 check and authentication user to prevent spam

 don't allow not-authenticated anonymous calls, only
authenticated requests from local users allowed

 don't allow direct access to critical resources (gateways, media
servers)

 anti-flood detection via pike

 calls from foreign domain should be always considered untrusted
unless via secure channel (TLS)

© Voice System SRL - OpenSER Admin Course 3

SIP authentication with OpenSER

© Voice System SRL - OpenSER Admin Course 4

SIP authentication

 www digest authentication
 IETF RFC2617
 challenge response paradigm

 send non-authenticated request
 server replies with challenge
 send authenticated request
 server accepts or rejects authentication

 registration authentication (end-point)
 www-authorize

 call authentication (relay)
 proxy-authorize

 the auth* modules in OpenSER
 against database, radius or diameter

© Voice System SRL - OpenSER Admin Course 5

SIP authentication

 Protocol:
 challenge-response using

MD5
 Based on secret shared

between client and server
 No message integrity

provided

1. REGISTER

2. 407 Challenge
(nonce,realm)

3. REGISTER
w/credentials

1. Request w/o
credentials

2. Challenge:
authenticate
yourself

3. Request
resubmitted
w/credentials

4. OK

© Voice System SRL - OpenSER Admin Course 6

Best practices

 why to authenticate?
 verifying user identify is the foundation of all other services and

checks (ACLs, profile, attributes, etc)
 this security check combines with other types of checks (during

registration, check also the validity of the uploaded information)

 what to authenticate?
 all requests pretending to come from one of yours subscriber
 it is a good practice to authenticate both initial and sequential

requests, but there are devices yet not supporting authentication
within the dialog

© Voice System SRL - OpenSER Admin Course 7

Best technics

 what kind of backend to use?
 the backend may be required by integration restrictions
 you can use multiple backend in parallel for different

domains/classes of subscribers

 the authentication check may fail due multiple causes
 depending of the backend, the check may report the cause of the

failure:
• subscriber does not exist

• invalid password

• expired nounce
 based on failure code, take the appropriate action from script (like

do not try to challenge if the subscriber does not exist)

© Voice System SRL - OpenSER Admin Course 8

Modules

 auth
 common frame for authentication
 provides functionalities for auth challenge and nonce management

 auth_db
 authentication check against database

 auth_radius
 authentication check against a RADIUS server

 auth_diameter
 authentication check against a DIAMETER server

© Voice System SRL - OpenSER Admin Course 9

DB backend

 subscribers are stored in DB
 password may be store in plain text (insecure) or in a pre-

computed format (HA1)
 modparam("auth_db", "password_column", "password")
 versus
 modparam("auth_db", "calculate_ha1", 1)
 modparam("auth_db", "password_column", "ha1")

 authentication means checking the user profile (password) in DB
and. in most scenarios, we need more than only the password:
 OpenSER provides a mechanism to configure a custom set of

attributes to be loaded from DB during the authentication process
 advantage: reduce the number of DB hits

 modparam("auth_db", "load_credentials",
 "$avp(i:12)=rpid; $avp(i:14)=email_address")

© Voice System SRL - OpenSER Admin Course 10

Radius backend

 passwords and subscriber data is fetched from a RADIUS server
 requires a radius client library to compile against

 lib radius client
 freeradius

 the authentication check is done by the RADIUS server; openser
does only the challeng part.

 there is a similar (as for DB) support for fetching additional
attributes during authentication, but in this case, the logic is on
the RADIUS server side – it decides what extra data to send.

© Voice System SRL - OpenSER Admin Course 11

Showcase

Script example

© Voice System SRL - OpenSER Admin Course 12

Credentials protection

© Voice System SRL - OpenSER Admin Course 13

Nonce protection

 the nonce generated by OpenSER contain a lifetime – if it is
expired, it will not be accepted

 modparam("auth", "nonce_expire", 100)

 as shorter is the lifetime, as smaller is the probability of a client
to reuse/fake the nonce

 even so, OpenSER cannot check if a nonce was used more than
once during its lifetime.

© Voice System SRL - OpenSER Admin Course 14

Credential checking..

REGISTER sip:siphub.net.org SIP/2.0
From: <sip:alice@siphub.net>;tag=c775
To: <sip:alice@siphub.net>
Authorization: Digest username="bob",

realm=“siphub.net.de", algorithm="md5",
uri="sip:siphub.net",
nonce="3edab81b7a8427be362c2a924f3171d215a8
f7d3",
response="4a868f9cbffd2b1f39c778abca78f75b"

 Cheating attempt: user “bob” with tries to register as user
“alice”

 To do so, the cheater submits proper bob’s credentials but
uses alice’s address of record in To header field

 Registrar must enforce a policy that links digest identity to
permissible addresses of records

© Voice System SRL - OpenSER Admin Course 15

...Credential checking...

 as the SIP specs allow usage on different SIP ID and Auth ID
during authentication, it the responsibility of the platform
implementer to do the logic mapping

 What SIP ID is allow a specific Auth ID?? - use the “uri_db”
module to define the mapping.
 in most of the case there is a 1 to 1 mapping
 if a Auth ID can be used by several SIP Ids, that create the mapping

in the “uri” table

 then use the check functions:
 # if REGISTER request

 if (check_to()) {...}

 # if other request

 if (check_from()) {...}

© Voice System SRL - OpenSER Admin Course 16

...Credential checking

 1 to 1 mapping

 modparam(“uri_db”,”use_uri_table”, 0)
 auth realm must be the same as the From/To domain

 n to 1 mapping

 modparam(“uri_db”,”use_uri_table”, 1)
 auth realm still must be the same as the From/To domain

+----+--------------+------------+-----------+----------------------------+
 | id | username | domain | uri_user | last_modified |
+----+--------------+------------+-----------+----------------------------+
 | 1 | auth1 | sip.com | sip1 |0000-00-00 00:00:00|
 | 2 | auth1 | sip.com | sip2 |0000-00-00 00:00:00|
+----+--------------+------------+-----------+----------------------------+

© Voice System SRL - OpenSER Admin Course 17

Showcase

Script example

© Voice System SRL - OpenSER Admin Course 18

IP Black lists

© Voice System SRL - OpenSER Admin Course 19

Problem

 when the script does request forwarding, the destination's IP still
may be to discover

 Example:
 seturi(“sip:user@voip.domainX.com”);
 t_relay();

 solving the destination via DNS (NAPTR, SRV, A) is does after
the last script intervention

 ⇒ final IP destination cannot be checked from the script

 ⇒ security bridge

mailto:user@voip.domainX.com

© Voice System SRL - OpenSER Admin Course 20

Solution

 define lists of IPs to be blocked for relaying

 ⇒ IP black lists
 depending of the destination you determined via script, apply

different IP blacklists in order to be sure that the request does not
get relayed to a protected IP (via DNS).

Example:
 define a blacklist with the IP address(es) of the PSTN gateway
 if you do a relay based on user location, that activate the blacklist

in order to prevent DNS based routing to IP's of the GWs
 if you do relay to a the GWs, do not apply the blacklist as the IPs

are allowed in this case.

© Voice System SRL - OpenSER Admin Course 21

IP blacklist definition

 global parameter in the configuration script:

 blacklist name

dst_blacklist=test1:{(any , 113.135.101.26 , 0 , "^MIN-SE:")}

 protocol (udp,tcp,tls,any) port (0=any)

 IP address regexp against the
 outgoing request

Example:

dst_blacklist=bl_tls:{(tls , 127.0.0.1 , 5060 , ""),(tls , 192.168.2.7 ,
5061 , "^X-auth:")}

dst_blacklist=bl_gw:{(any , 192.168.2.10 , 0 , "")}

© Voice System SRL - OpenSER Admin Course 22

How to use it?

 before doing request relay, just select which blacklist should
apply:

 use_blacklist(“bl_gw”);

 can be used multiple time to set more than one blacklist
 the set lists will be automatically reset at the end of the script

 the requests that hits a blacklist will be automatically rejected by
a “473 Destination Filtered” with no failure route triggering

© Voice System SRL - OpenSER Admin Course 23

DNS black list

 automatic black listing based on DNS failover
 when a IP destination is unavailable, it is temporary blacklisted as a

self protection mechanism (Ex: tcp setup to an unresponsive host
may temporary block a process)

 the reasons for blacklisting:
• error at transport layer (TCP only supported)

• error at SIP layer (timeout with no response, 5xx class reply)
 it may be combine with dns_failover – if a destination failed, dns

will be used to provide an alternative (if any)

 enabled via global parameter
disable_dns_blacklist = no

 when enabled, it is used all the time

© Voice System SRL - OpenSER Admin Course 24

Showcase

Script example

