
OpenSER Admin Course

Voice System SRL

http://www.voice-system.ro

http://www.openser.org

http://www.voice-system.ro/
http://www.openser.org/

© Voice System SRL - Advanced OpenSER Course 2

openser nat traversal

NAT Traversal

© Voice System SRL - Advanced OpenSER Course 3

NAT

NAT is so popular because of
 public IP shortage
 security issues
 network design issues

In Europe, more than 80% of the Internet users are behind NAT

Problem: VoIP does not work over NATs without extra work.

There are many scenarios for which no single solution
exists. Solutions include: STUN, ALGs, symmetric
communication, media relay,

© Voice System SRL - Advanced OpenSER Course 4

Where NATs affect SIP

INVITE sip:UserB@there.com SIP/2.0

Via: SIP/2.0/UDP 192.168.99.1:5060

From: BigGuy <sip:UserA@here.com>

To: LittleGuy <sip:UserB@there.com>

Call-ID: 12345600@here.com

CSeq: 1 INVITE

Subject: Happy Christmas

Contact: BigGuy <sip:UserA@192.168.99.1>

Content-Type: application/sdp

Content-Length: 147

v=0

o=UserA 2890844526 2890844526 IN IP4 here.com

s=Session SDP

c=IN IP4 100.101.102.103

t=0 0

m=audio 49172 RTP/AVP 0

a=rtpmap:0 PCMU/8000

 Contact
 Route
 Record-Route
 Via header fields

(received tag)
 SDP payload

© Voice System SRL - Advanced OpenSER Course 5

Current NAT Traversal Practices....

 Application Layer Gateways (ALGs) – built-in application
awareness in NATs.
 Requires ownership of specialized software/hardware and

takes app-expertise from router vendors.
 in real life this type of devices break thinks even more due por

implementation

 Geeks’ choice: Manual configuration of NAT translations
 Requires ability of NATs, phones, and humans to configure

static NAT translation. (Some have it.) If a phone has no
SIP/NAT configuration support, an address-translator can be
used.

 it is not a real life solution

© Voice System SRL - Advanced OpenSER Course 6

.....Current NAT Traversal Practices

 STUN (RFC 3489): Alignment of phones to NATs
 Requires NAT-probing ability (STUN support) in end-devices

and a simple STUN server. Implementations exist.
 Does not work over NATs implemented as “symmetric”.
 Troubles if other party in other routing realm than STUN

server.
 Works even if NAT device not under user’s control.

 Relay: Each party maintains client-server communication
 Introduces a single point of failure; media relay subject to

serious scalability and reliability issues
 Works over most NATs

 Symmetric clients (RFC3581 for signaling, symmetric
media), comedia support

© Voice System SRL - Advanced OpenSER Course 7

NAT Practices - Conclusions

Ltd.okN/ANoN/ASymmetric NATs?

Big

Ok

Ltd. (+)

Yes

N/A

Manual

poor OkOk? (o)Scalability

SmallSmallSmallSmallUser Effort

NoYesLtd. (*)YesNAT support
needed?

YesYesYesNoPhone support
needed?

MaybeN/ALtd. (*)N/AWorks over ISP’s
NATs?

RelayUPnPSTUNALG

o … application-awareness affects scalability*… does not work for symmetric NATs
+ … port translation must be
configurable

© Voice System SRL - Advanced OpenSER Course 8

NAT Traversal Scenarios

 There is no “one size fits it all” solution. All current
practices suffer from many limitations.

 Voice System's observations for residential users
behind NATs: Affordability wins: SIP-aware users
relying on public SIP server use ALGs or STUN.

• Our solution for operation on the public Internet:
– Let as many phones as possible handle NAT traversal

autonomously using STUN (client side)
– Detect cases which cannot be handled autonomously.
– If “hard NATs” detected, ignore SIP and help out with RTP

(server side)

© Voice System SRL - Advanced OpenSER Course 9

Solution – Client Side

 the STUN client from the UAC must be able to detect symmetric
NATs and not to try to cross them as it is not possible.

 the STUN client is also responsible for keeping the NAT bind
open for incoming SIP and RTP traffic

 for the best external IP&port detection, the STUN server must
reside on the same IP as the SIP proxy.

 for the same reason, the STUN server requires two public IPs.

© Voice System SRL - Advanced OpenSER Course 10

Solution – Server Side

 A complete NAT traversal solution includes:
 manipulation of the signaling traffic (this is done directly from the

OpenSER script)
 media relay (this is done with the help of an external application)

 The NAT traversal may be implemented in two ways:
 built in the main proxy configuration
• (+) very compact solution – efficient and scalable as load

• (-) it increases the complexity of the main proxy cfg.
 via a specialized SBC in front of the main proxy.
• (+) detaches the NAT logic and simplifies the proxy cfg

• (+) is suitable for geographical distribution with one main proxy

• (-) introduced some overhead as an extra SIP hop

• (-) not so efficient as data become redundant between SBC and proxy

© Voice System SRL - Advanced OpenSER Course 11

Solutions – OpenSER module

 OpenSER provides two similar NAT handling module:
 nathelper
 mediaproxy

 they offer both functions
 to mangle the SIP part (headers and SDP)
 to communicate and use an RTP relay.

 “nathelper” module
 works with RTPproxy – a C written fast media relay

 “mediaproxy” module
 works with MediaProxy – a Phyton written media relay

© Voice System SRL - Advanced OpenSER Course 12

Solution – Algorithm

 NAT detection
 the detection is done for initial SIP requests; sequential requests

will rely on the this initial detection.
 detects if the sender of the request is behind NAT; can be based on :
• Contact URI, IP part

• VIA address/port versus received address/port

• SDP IP class

 reply handling
 add to the VIA header (of the previous hop) the received IP and port

– the source where the request was received from
 be sure to route the replies back to the same IP and port where the

request was received from (done automatically)

 use the same local socket (IP and port) when talking to a natted
client (automatically done)

© Voice System SRL - Advanced OpenSER Course 13

Solution – Algorithm - REGISTER

 detects if the sender of the REGISTER is behind NAT

 save in user location:
 the received contact – SIP clients expect to see the contact they

published;
 the source IP and port – you need them to be able to cross the NAT;
 a flag to mark if the contact is NATed or not.

 when sending a request back to the UAC, the received contact
URI will be used as RURI and the received source IP and port
will be set as outbound proxy.

© Voice System SRL - Advanced OpenSER Course 14

Solution – Algorithm - PING

 After registration, the proxy must be sure that the NAT bind will
remain open and it will be able to deliver SIP requests to the
registered contact

 solution – perform NAT ping – periodically traffic sent to the SIP
UAC with the only purpose of preventing the NAT bind to close.

 types on ping:
 UDP ping – use a dummy UDP package as probe
• very simple to generate, but it generates only inbound traffic

 SIP ping – use the OPTIONS SIP requests as probe
• more complex to generate, but it triggers a reply from the UAC, so we

get bidirectional traffic

© Voice System SRL - Advanced OpenSER Course 15

Solution – Algorithm – INVITE (I)

REQUEST processing

 detect if the caller is behind NAT
 if yes, mangle the contact URI and mark it as nated (add a special

URI parameter as marker).

 resolve (via the proxy routing logic) the destination
 via the user location lookup, the destination may be also natted or

not

 before forwarding the INVITE, if at least one of the ends was
detected as natted, enable to usage of RTPproxy as media relay –
this will replace the private IP&port from SDP with the public
IP&port of the RTPproxy.

© Voice System SRL - Advanced OpenSER Course 16

Solution – Algorithm – INVITE (II)

REPLY processing

 if the INVITE is negatively replied, disable RTPproxy

 if the INVITE is 200 OK replied, confirm RTPproxy in order to
update the SDP IP and port with RTPproxy coordinates

 if destination was previously detected as natted (at request time),
mangle the contact URI and mark it as nated (also add a special
URI parameter as marker).

© Voice System SRL - Advanced OpenSER Course 17

Solution – Algorithm – reINVITE

 NAT traversal algorithm for re-INVITEs is highly similar to the
one for INVITEs.

 The only difference is that the NAT detection (for both source
and destination) is not performed anymore, but the markers from
the contact URIs are used.

 Be sure and re-enable RTPproxy as re-INVITEs usually force
new SDP information.

© Voice System SRL - Advanced OpenSER Course 18

Solution – Algorithm – non-INVITE

 NAT traversal algorithm for non-INVITEs is the same as for
INVITEs.

 The difference is that there are no media concerns, so no
RTPproxy will be enabled.

 For non-INVITE requests that establish dialogs/sessions, the
same guidance lines as for re-INVITEs are to be used.

 Again, no media is to be used.

© Voice System SRL - Advanced OpenSER Course 19

NAT tests in OpenSER

 nathelper module
 prototype: nat_uac_test(flags)

 flags parameter specifies the NAT tests to be done
 return true if one of the tests succeeds

 NAT tests
 Contact header field is searched for occurrence of RFC1918

addresses.
 the "received" test: address in Via is compared against source IP

address of signaling
 top most VIA header is searched for occurrence of RFC1918

addresses
 SDP is searched for occurrence of RFC1918 addresses
 test if the source port is different from the port in Via

© Voice System SRL - Advanced OpenSER Course 20

Solution - TIPS

 If SDP is negotiated via 200 OK and ACK (instead of INVITE
200 OK), the same algorithm is used, but the RTPproxy must be
enabled and re-enabled for 200 OK and ACK.

 To allow chaining of several RTP relays (on the media path),
check if the SDP IP is public or not.

 If public, instruct RTPproxy to start using that IP for sending the
media traffic – doing so, you avoid dead-locks between two
RTPproxies that waits one after the other in order to discover the
source of media.

© Voice System SRL - Advanced OpenSER Course 21

NAT Traversal Optimizations

 when source is not behind the nat and it is a parallel forking
 you can enable RTP relaying only for NATted destinations using

onbranch_route

 for serial forking, the failure_route can be used to disable RTP
relaying if the new destination is on public IP. You should enable
RTP relaying after creating the transaction, to avoid the changes
in SDP for new branches

 if calls go to media servers in the public network, you can rely on
comedia support present in most of such entities (asterisk, cisco)

 same for PSTN gateways
 you can use configuration file tricks to detect when the source

and destination are behind same NAT
 compare source IP with destination URI domain after the

lookup(“location”)
 potential risk when dealing with multiple levels of NAT

© Voice System SRL - Advanced OpenSER Course 22

openser nat traversal

walk through openser nat traversal configuration file

© Voice System SRL - Advanced OpenSER Course 23

questions?

BREAK

