
OpenSER Admin Course
 Configuration Basics

Voice System SRL

http://www.voice-system.ro

http://www.openser.org

http://www.voice-system.ro/
http://www.openser.org/

© Voice System SRL - Advanced Admin Course 2

Configuration file

 it is a text file (only file-system storage supported)

 no native support for advanced text processing (like define,
include, etc), but very easy and simple to integrate with M4

 the file is loaded and processed only at startup (not used at
runtime)

 currently there is no support for re-loading the configuration file
at runtime – you need to restart the application; fortunately the
most changeable data is configured via DB, where reload is
possible.

Ex:
openser -f openser.cfg

© Voice System SRL - Advanced Admin Course 3

Config file structure

© Voice System SRL - Advanced Admin Course 4

configuration file format....

global options
debug=9
fork=no
log_stderror=yes
listen=192.168.1.34:5060
.....

module loading
mpath=”/usr/local/lib/openser/modules/”
loadmodule=”tm.so”
loadmodule=”registrar.so”
.....

module parameters
modparam(“registrar”,”append_branches”,1)
modparam("tm", "fr_inv_timer", 30)
modparam("nathelper", "rtpproxy_sock", “/var/run/rtpproxy.sock”)
.....

© Voice System SRL - Advanced Admin Course 5

....configuration file format....

initial request route
route{

 if (route(1)) {
 }

 route(x);
}
additional routes – can be invoked from any other route
route[1]{
 if (uri=~”sip:[0-9]+@”) {
 return(1); # return true on the above route
 } else if (uri=~”sip:[a-zA-Z]+@”) {
 return(-1); # return false
 }
 sl_send_reply(“400”,”Bad URI”);
 exit;
}
......

© Voice System SRL - Advanced Admin Course 6

....configuration file format

route[x]{
 t_on_reply(“1”);
 t_on_failure(“1”);
 t_relay();
 exit
}
onreply routes – triggered by TM each time a reply is received; no routing is available
onreply_route[1]{
 xlog(“”,”reply received from $si (method=$rm)\n”)
 if (method==”INVITE” && nat_uac_test(“1”))
 fix_nated_contact();
}
failure routes – triggered by TM each time a negative final reply is elected;
failure_route[1]{
 if (t_check_status(“486”)) {
 append_branch(“sip:192.168.2.77:5060”)
 t_relay();
 }
}

© Voice System SRL - Advanced Admin Course 7

Global options...

Options that controls the core and all modules. Most relevant:

 Listen interfaces
listen=udp:192.168.2.2:5060

listen=tcp:192.168.2.3:5066 #requires TCP support

listen=tls:192.168.2.3 #requires TLS support; TLS default port is 5061

 Logging
debug=3 #logging level

memlog=3 #log level for memory related debugging

log_stderror=no #use syslog and not standard error

log_facility=LOG_LOCAL0

log_name=”my-proxy” #default is argv[0]

© Voice System SRL - Advanced Admin Course 8

....Global options...

 Protocol control
disable_tcp=no

disable_tcp=no

NOTE : UDP cannot be disabled as it is mandatory by RFC

 Number of processes
fork = yes # fork additional SIP works

NOTE : if fork “no”, only first UDP interface will be used, and no
other protocol will be enabled (TCP and TLS).

children = 4 # number of processes per UDP interface

tcp_children = 6 # total numbers of TCP SIP worker processes

© Voice System SRL - Advanced Admin Course 9

....Global options...

 Daemon options
gid/group=sip # unix group

uid/user=sip # unix user

wdir=”/” # working directory

chroot=”/usr/local/openser-1.2”

disable_core_dump=no # enable core dumping

 SIP identity
server_header=”My openser”

default is “OpenSer (<version> (<arch>/<os>))”

server_signature = yes

user_agent_header=”My openser”

© Voice System SRL - Advanced Admin Course 10

....Global options

 Miscellaneous
alias=”mydomain.sip” # to set alias hostnames for the server

auto_aliases=no # discover aliases via reversed DNS

avp_aliases=”my_avp=i:34”

disable_dns_failover = yes

sip_warning=yes #add a debugging header in replies

© Voice System SRL - Advanced Admin Course 11

Modules section....

 Loading a module

loadmodule “/usr/lib/openser/modules/tm.so”
or

mpath=”/usr/lib/openser/modules/”

loadmodule “tm.so”

 Setting module parameter

modparam(“tm”, ”fr_inv_timer”, 20)

 module name parameter name parameter value

modparam(“tm”, ”fr_inv_timer_avp”, ”$avp(tm_timeout)”)

© Voice System SRL - Advanced Admin Course 12

....Modules section

 Multi-module parameters

modparam(“usrloc”, ”db_url”,

 “mysql:openser@localhost/openser”)

modparam(“auth_db”, ”db_url”,

 “mysql:openser@localhost/openser”)

 ≡

modparam(“usrloc|auth_db”, ”db_url”,

 “mysql:openser@localhost/openser”)

© Voice System SRL - Advanced Admin Course 13

Routes section

 the routes contain the routing logic
 there may be multiple routes
 there are multiple types of routes:

 request route : route[n] {...}
 reply route: onreply_route[m] {...}
 failure route: failure_route[x] {...}
 branch route: branch_route[y] {...}
 error_route: error_route {...}

 in routes you can use :
 function exported by core or modules
 keywords and pre-defined values from core
 pseudo-variables exported by core or modules

© Voice System SRL - Advanced Admin Course 14

Message flow in OpenSER

© Voice System SRL - Advanced Admin Course 15

Routing blocks

 route - Request routing block. It contains a set of actions to be
taken for SIP requests.

 The main ‘route’ block identified by ‘route{...}’ or ‘route[0]{...}’
is executed for each SIP request.

 The implicit action after execution of the main route block is to
drop the SIP request. To send a reply or forward the request,
explicit actions must be called inside the route block.

route[1] {
 # forward according to uri
 forward();
 }

 route {
 if(is_method("OPTIONS")) {
 # send reply for each options request
 sl_send_reply("200", "ok");
 exit();
 }
 route(1);
 }

© Voice System SRL - Advanced Admin Course 16

Routing blocks

 branch_route - request’s branch routing block. It contains a set
of actions to be taken for each branch of a SIP request. It is
executed only by TM module after it was armed via
t_on_branch(”branch_route_index”).

 route {
 lookup("location");
 t_on_branch("1");
 if(!t_relay()) {
 sl_send_reply("500",
 "relaying failed");
 }
 }

 branch_route[1] {
 if(uri=~"10\.10\.10].10") {
 # discard branches that go
 # to 10.10.10.10
 drop();
 }
 }

© Voice System SRL - Advanced Admin Course 17

Routing blocks

 failure_route - failed transaction routing block. It contains a set
of actions to be taken each transaction that received only negative
replies (>=300) for all branches. The ‘failure_route’ is executed
only by TM module after it was armed via
t_on_failure(”failure_route_index”).

 Note that in ‘failure_route’ is processed the request that initiated
the transaction, not the reply .

© Voice System SRL - Advanced Admin Course 18

Routing blocks

route {

 lookup("location");

 t_on_failure("1");

 if(!t_relay()) {

 sl_send_reply("500", "relaying failed");

 }

 }

 failure_route[1] {

 if(is_method("INVITE")) {

 # call failed - relay to voice mail

 t_relay_to_udp("voicemail.server.com","5060");

 }

 }

© Voice System SRL - Advanced Admin Course 19

Routing blocks

 onreply_route - reply routing block. It contains a set of actions
to be taken for SIP replies.

 The main ‘onreply_route’ identified by ‘onreply_route {...}’ or
‘onreply_route[0] {...}’ is executed for all replies received.

 Certain ‘onreply_route’ blocks can be executed by TM module for
special replies. For this, the ‘onreply_route’ must be armed for
the SIP requests whose replies should be processed within it, via
t_on_reply(”onreply_route_index”).

© Voice System SRL - Advanced Admin Course 20

Routing blocks

route {

 lookup("location");

 t_on_reply("1");

 if(!t_relay()) {

 sl_send_reply("500", "relaying failed");

 }

}

onreply_route[1] {

 if(status=~"1[0-9][0-9]") {

 log("provisional response\n");

 }

}

© Voice System SRL - Advanced Admin Course 21

Routing blocks

 error_route - the error route is executed automatically when a
parsing error occurred during SIP request processing. This allow
the administrator to decide what to do in case of error.

 In error_route, the following pseudo-variables are available to get
access to error details:
 $(err.class) - the class of error (now is ‘1’ for parsing errors)
 $(err.level) - severity level for the error
 $(err.info) - text describing the error
 $(err.rcode) - recommended reply code
 $(err.rreason) - recommended reply reason phrase

© Voice System SRL - Advanced Admin Course 22

Routing blocks

error_route {

 xlog("--- error route class=$(err.class) level=$(err.level)

 info=$(err.info) rcode=$(err.rcode) rreason=$(err.rreason) ---
\n");

 xlog("--- error from [$si:$sp]\n+++++\n$mb\n++++\n");

 sl_send_reply("$err.rcode", "$err.rreason");

 exit;

 }

© Voice System SRL - Advanced Admin Course 23

SIP flow

OpenSER

INVITE

route[0]

REPLY

branch_route[n]

INVITE

180 REPLY

reply_route[m]
404 REPLY

reply_route[m]failure_route[x]

branch_route[n]

INVITE

180 REPLY

reply_route[m]
200 REPLY

reply_route[m]

© Voice System SRL - Advanced Admin Course 24

SIP flow

OpenSER

INVITE

route[0] branch_route[n]

INVITEa

reply_route[m]

404 REPLYa

INVITEb

branch_route[n]

180 REPLYb

reply_route[m]

reply_route[m]

408 REPLYb

failure_route[x]

404 REPLY

© Voice System SRL - Advanced Admin Course 25

Scripting in OpenSER

© Voice System SRL - Advanced Admin Course 26

Functions

 core functions
 no restriction about the number of parameters (0....N)
 parameters can be strings or integers
 Ex:
• forward(“udp:192.168.3.55:5060”);

• setflag(1);

 module functions
 can have maximum 2 parameters
 they take only string parameters
 Ex:
• sl_send_reply("200","OK");

• is_method("INVITE")

© Voice System SRL - Advanced Admin Course 27

Keywords and defines

 predefined values to be used in tests:
 INET / INET6
 TCP / TLS / UDP
 myself - it is a reference to the list of local IP addresses, hostnames

and aliases that has been set in OpenSER configuration file.

 keyword
 af / proto
 dst_ip / dst_port
 src_ip / src_port
 method / status / retcode
 uri / from_uri / to_uri

Ex:
 if (proto==UDP && af==INET) {...}
 if (method==”INVITE” && uri=~”sip:[0-9]+@”) {...}

© Voice System SRL - Advanced Admin Course 28

Pseudo-variables

Pseudo-variable marker is character $
 information reference (form message or openser)

Ex: $ci – reference to message callid

 $ru / $rU / $rd – reference to RURI / usernamer / domain of RURI

 $ml – reference to message length

$rm – reference to request method

$pp – reference to process PID

$Tf – reference to current time formated as string

NOTE: most of the information reference pseudo variables are read-only;
exceptions are:
 $ru* / $du - request and destination URI
 more in upcoming 1.3.0, e.g., $br - branch

© Voice System SRL - Advanced Admin Course 29

Pseudo-variables

 Headers (also information reference)

$(hdr(name)[N]) - represents the body of the N-th header identified
by ‘name’. If [N] is omitted then the body of the first header is
printed. The first header is got when N=0, for the second N=1,
a.s.o. To print the last header of that type, use -1. No white
spaces are allowed inside the specifier (before }, before or after
{, [,] symbols). When N=’*’, all headers of that type are printed.

*** the above format is valid for 1.3, and N can be a PV as well

© Voice System SRL - Advanced Admin Course 30

Pseudo-variables

 AVPs

 $(avp(id)[N]) - represents the value of N-th AVP identified by
‘id’.

 The ‘id’ can be:
 “[si]:name” - name is the id of an AVP; ‘s’ and ‘i’ specifies if the

id is string or integer. If missing, it is considered to be string.
 “name” - the name is an AVP alias

IMPORTANT: AVPs are hooked on messages or transactions. In
stateful mode, same AVP can be accessed when processing any
message related to the same transaction. Also, an AVP can have
multiple values.

© Voice System SRL - Advanced Admin Course 31

Pseudo-variables

 Script variables
$var(name) - refers to variables that can be used in configuration script,

having integer or string value. This kind of variables are faster the
AVPs, being referenced directly to memory location. The value of
script variables persists over the processing of SIP messages, being
specific per each OpenSER process.

• $var(a) = 2; -- sets the value of variable 'a' to integer '2'

• $var(a) = "2"; -- sets the value of variable 'a' to string '2'

• $var(a) = 3 + (7&(~2));

• $var(a) = "sip:" + $au + "@" + $fd; -- compose a value from
authentication username and From URI domain

IMPORTANT: script variables exists only during script execution
(including sub-routes). Once the script ended, they will be lost.
Script variables are much, much faster than AVPs. A script
variable can have only one value.

© Voice System SRL - Advanced Admin Course 32

Transformations

different transformations can be applied to Pseudo-Variables:
 String transformations

 {s.len}
 {s.int}
 {s.substr,offset,length}
 {s.select,index,separator}

Ex: $var(len) = $(fU{s.len})

 URI transformations
 {uri.user}
 {uri.host}
 {uri.params}

Ex: $var(name) = $(avp(my_uri){uri.user})

© Voice System SRL - Advanced Admin Course 33

Transformations

 Parameters list transformation
 {param.value,name} - return the value of parameter ‘name’

Example:

"a=1;b=2;c=3"{param.value,c} = "3"

 {param.name,index} - return the name of parameter at position
‘index’.

Example:

"a=1;b=2;c=3"{param.name,1} = "b"

© Voice System SRL - Advanced Admin Course 34

Statements

 if - IF-ELSE statement

Example of usage:

 if(is_method("INVITE"))

 {

 log("this sip message is an invite\n");

 } else {

 log("this sip message is not an invite\n");

 }

© Voice System SRL - Advanced Admin Course 35

Statements

 switch - SWITCH statement - it can be used to test the value of a
pseudo-variable.

route {

 route(1);

 switch($retcode)

 {

 case -1:

 log("process INVITE requests here\n");

 break;

 case 1:

 log("process REGISTER requests here\n");

 break;

 case 2:

 case 3:

 log("process SUBSCRIBE and NOTIFY requests here\n");

 break;

 default:

 log("process other requests here\n");

 }

© Voice System SRL - Advanced Admin Course 36

Statements

 # switch of R-URI username

 switch($rU)

 {

 case "101":

 log("destination number is 101\n");

 break;

 case "102":

 log("destination number is 102\n");

 break;

 case "103":

 case "104":

 log("destination number is 103 or 104\n");

 break;

 default:

 log("unknown destination number\n");

 }

 }

© Voice System SRL - Advanced Admin Course 37

Statements

route[1]{
 if(is_method("INVITE"))
 {
 return(-1);
 };
 if(is_method("REGISTER"))
 return(1);
 }
 if(is_method("SUBSCRIBE"))
 return(2);
 }
 if(is_method("NOTIFY"))
 return(3);
 }
 return(-2);
 }

© Voice System SRL - Advanced Admin Course 38

Statements

 Assignment – these can be done like in C, via ‘=’ (equal). The
following pseudo-variables can be used in left side of an
assignment:
 AVPs - to set the value of an AVP
 script variables - to set the value of a script variable
 $ru - to set R-URI
 $rd - to set domain part of R-URI
 $rU - to set user part of R-URI
 $du - to set dst URI
 more on upcoming 1.3.0

$var(a) = 123;

© Voice System SRL - Advanced Admin Course 39

Statements

 String operations

For strings, ‘+’ is available to concatenate.

$var(a) = "test";

$var(b) = "sip:" + $var(a) + "@" + $fd;

© Voice System SRL - Advanced Admin Course 40

Statements

 Arithmetic operations
For numbers, one can use:

 + : plus

 - : minus

 / : divide

 * : multiply

 % : modulo

 | : bitwise OR

 & : bitwise AND

 ^ : bitwise XOR

 ~ : bitwise NOT

$var(a) = 4 + (7 & (~2));

