WebRTC and VoIP: bridging the gap

Images Source: Google Images

victor.pascual.avila@gmail.com @victorpascual http://es.linkedin.com/in/victorpascualavila
Intro

• What is WebRTC (Real Time Communications)?
 – A browser-embedded media engine (still being finalized)
 – Emerging and standard method of web-based RTC (W3C/IETF/3GPP)
 – Another type of access framework

• Why the hype?
 – Web: most dynamic, innovative place on planet
 – RTC has largely been absent
 – WebRTC delivers RTC to those that create the Web

• WebRTC is posed to grow rapidly and WebRTC will be an important access method in the future for Service Providers, contact centers, and enterprises
 – Number of developers: 1000s of SIP programmers vs. 100,000 of JavaScript programmers
 – Deployment: IP phones must be physically deployed or software installed (software updates may not be automated) vs. Browsers automatically updated to add support; client updates automatically pushed to browser
 – Several dozens of vendors with unique SIP implementations vs. Handful of browser vendors with unique WebRTC implementations
 Opensource code available

• Moving really fast, lots of early implementations, customer trials...
 BUT still a number of open issues
 – MTI video codec discussion, SDP O/A, strict-firewall/HTTP-middlebox traversal, Microsoft’s CU-RTC-Web, Apple, etc
Use Cases

• WebRTC enables innovative use cases on the Web
 – WebRTC It’s not meant to be the new Web Telephony

• But interworking towards existing legacy is required
 – Extend existing SIP environments into the exciting new web domain

• Service Provider subscriber access via WebRTC methods
 – Browser-based RTC to complement SIP offerings or simply extend existing SIP-services over web
 • Voice service extension with web-phone
 • New Telco-OTT services (over-the-top)
 • RCS-e (rich communications services – enhanced)
 • Conferencing
 • Web-based comms provider PSTN break-out

• Enterprise UC without thick or thin client soft phones
 – Easier to maintain & break single UC vendor lock

• Contact centers embedding RTC into customer service web pages
 – Customer satisfaction & lower costs

• Not only Web browsers (e.g. Chrome, Firefox) but also native support via apps or OS (e.g. set-top boxes, FirefoxOS)
Signaling Plane

- WebRTC has no defined signaling method — Don’t panic, it’s not a bad thing!
 - JavaScript app downloaded from web server. Popular choices are:
- SIP over Websockets
 - Standard mechanism (draft-ietf-sipcore-sip-websocket) – soon to be RFC
 - Extend SIP directly into the browser by embedding a SIP stack directly into the webpage – typically based on JavaScript
 - WebSocket create a full-duplex channel right from the web browser
 - Popular examples are jsSIP, sip-js, QoffeeSIP, or sipML5

- Call Control API
 - proprietary signaling scheme based on more traditional web tools and techniques
 - GSMA/OMA extending RCS-e “standard” API to include WebRTC support
 - Other alternatives based on XMPP, JSON or foobar
Media Plane

- A browser-embedded media engine
 - Audio codecs – G.711, Opus are MTI
 - Video codecs – H.264 vs. VP8 (MTI TBD - IPR discussion)
 - Media codecs are negotiated with SDP (for now at least)
 - Best-of-breed echo canceler
 - Video jitter buffer, image enhancer
 - Requires Secure RTP (SRTP) – DTLS
 - Requires Peer-2-peer NAT traversal tools (STUN, TURN, ICE) – trickle ICE
 - Multiplexing: RTPs & RTP+RTCP

- Yes, your favorite SIP client implementation is compatible with most of this. But, the vast majority of deployments
 - Use plain RTP
 - Do not support STUN/TURN/ICE
 - Do not support multiplexing (ok, not really an issue)
 - Use different codecs that might not be supported on the WebRTC side
Option 1: Just ignore the gap

And expect all deployed equipment to be upgraded soon
Option 2: Try to fix it

When/While necessary (hopefully with the right solution!)
OK, might need to do a couple of fixes to make things work, but...

HOW?
THE UNMENTIONABLE

THE GATEWAY

evil inside
WebRTC Gateway Taxonomy
(great blog post by Chad Hart)

• SIP-over-WebSockets gateway
 – act as a SIP-server and terminate the WebSocket from the browser and convert that to UDP/TCP transport into the SIP network
• Web API to SIP gateway
 – act as a web-server and convert the API calls to SIP
• Media controller
 – ICE/STUN/TURN
 – SRTP/RTP interworking
 – Mux/demux
• Transcoding gateway
 – convert from one codec to another (incl. video!)
• Flash RTMP gateway
 – majority of browsers on the web today support flash and not WebRTC

Several implementation options:
 – one or more of the options above
 – WebRTC as a feature/product/service
 – Other features (?): identity, charging, session recording, LI, middlebox-traversal, etc.
Thank you!