Qcision

The platform for interoperable WebRTC

Kamailio World 2014

Evolution on the web

Sir Tim Berners-Lee
creates HTML. Web
-pages are static

e W3C produces the
- ~ = DOMT1 specification
1990 1996 = 1998 2004 =

Microsoft and Netscape
introduce different

mechanisms for DHTML E _

4/3/2014

© Acision 2014

G :

2011

Google uses Ajax
in Gmail (W3C
releases 1st draft in
2006) — the dawn
of web-apps

Q

WebSocket and
WebRTC
implementations
become available

Revolution In telecoms

Before today the operators (big and small)
had full control over real-time
communications because it was hard to do
and substantial infrastructure investment
was required.

Claude Chappe -
invented the optical

telegraph From the 60 _ From the 1990s onwards

J— onwards digital voice started to be carried
- Alexander " exchanges start to “ on technologies developed
. . Graham . appear . for data networks such as
. _ Bell patents _ ATM and IP
.. the telephone
ml— — = = — -
n " > > =
1792 1837« 1876 1919. 1960s] 1990s WebSocket and 2011 .
) Rotary dial . WebRTC
. " enters implementations .
service - become .
i available G
First commercial "
electrical telegraph .
created by Fedr 4 1963: DTMF
Cooke and éw. " enters service

4/3/2014 Wheatstone © Acision 2014

RTCWeb

There are a number of proprietary
Implementations that provide direct interactive
rich communication using audio, video,
collaboration, games, etc. between two peers'
web-browsers. These are not interoperable, as

they require non-standard extensions or plugins
to work. There is a desire to standardize the
basis for such communication so that
interoperable communication can be established
between any compatible browsers.

Real-Time Communication in WEB-
Browsers (rtcweb) 2013-03-13 charter

WebRTC

The mission of the Web Real-Time Communications
Working Group, part of the Ubiquitous Web
Applications Activity, is to define client-side APIs to
enable Real-Time Communications in Web
browsers.

These APIs should enable building applications that

can be run inside a browser, requiring no extra
downloads or plugins, that allow communication
between parties using audio, video and
supplementary real-time communlcatlon without
having to use intervening servers (unless needed for
firewall traversal, or for providing intermediary
services).

Web Real-Time Communications Working
Group Charter

RTCWeb and WebRTC: not the same thi

« RTCWeb is the on-the-wire protocol as defined by
the IETF and may be used in many applications
and systems

— Within VoIP phones
— On network servers
— Includes MTI codecs for audio and video

« WebRTC is the browser API as defined by the IETF

Q RTCWeb/WebRTC Architecture

The web

Your
browser

Based on the diagram from http://www.webrtc.org/reference/architecture

4/3/2014 © Acision 2014

Signalling not included

« Google made a controversial (but very wise)
decision not to specify how the signalling
should work

« Signalling is required
— To discover who to communicate with

— To exchange information on what the
communication should be (audio, data, video,
and codecs)

« Even the simplest, proprietary, RESTful
exchange is signalling

Interoperability is sometimes required

 These use-cases are typically ones where the point
of the application is communication

* For example:

— Conferencing — calls in and out of legacy networks are
required

— Call Centres — calls in and out of legacy networks are
required

— Virtual PBX — calls in and out of legacy networks are
required

4/3/2014 © Acision 2014 9

Q The signalling trapezoid

Server @EIGLOEIITIR Server

Media

4/3/2014 © Acision 2014

Signalling options

* Open standards are usually best
— SIP over WebSocket, http://tools.ietf.org/html/rfc7118

— XMPP over WebSocket, http://tools.ietf.org/html/draft-m offitt-
Xxmpp-over-websocket

— OpenPeer, http://openpeer.org/
« The WebRTC API is easy but signalling is often hard

— There are many open-source libraries that do the signalling
— The library APls vary in complexity to meet every need

— Hosted infrastructure lets you add real-time communications
to your website without having to build a network yourself

4/3/2014 © Acision 2014 1"

http://tools.ietf.org/html/rfc7118
http://tools.ietf.org/html/draft-moffitt-xmpp-over-websocket
http://tools.ietf.org/html/draft-moffitt-xmpp-over-websocket
http://tools.ietf.org/html/draft-moffitt-xmpp-over-websocket
http://tools.ietf.org/html/draft-moffitt-xmpp-over-websocket
http://tools.ietf.org/html/draft-moffitt-xmpp-over-websocket
http://tools.ietf.org/html/draft-moffitt-xmpp-over-websocket
http://tools.ietf.org/html/draft-moffitt-xmpp-over-websocket
http://tools.ietf.org/html/draft-moffitt-xmpp-over-websocket
http://tools.ietf.org/html/draft-moffitt-xmpp-over-websocket
http://tools.ietf.org/html/draft-moffitt-xmpp-over-websocket
http://openpeer.org/
http://openpeer.org/

Q HOWTO: Kamailio as a SIP over WebSocket server

 Download, build, and install Kamailio 4.1

* Create a kamailio.cfg file based on the
following code snippets

http://www.kamailio.org/

http://www.kamailio.org/
http://www.kamailio.org/

Q Handling WebSocket handshakes in Kamailio

tcp accept no cl=yes
event route[xhttp:request] {
set reply close();
set reply no connect();
if (Shdr (Upgrade)=~"websocket"
&& Shdr (Connection)=~"Upgrade"
&& Srm=~"GET") {
Validate as required (Host:, Origin:, Cookie:)
if (ws_handle handshake ())

exit;

xhttp reply("404", "Not Found", "", "");

4/3/2014 © Acision 2014

WebSocket connections are always behi

e Javascript applications cannot see the real IP
address and port for the WebSocket connection

* This means that the SIP server cannot trust
addresses and ports in SIP messages received
over WebSockets

« nathelper and/or outbound can be used to solve
this problem

Q Using nathelper on SIP over WebSocket requests

modparam (“nathelper|registrar”, “received avp”, “Savp(RECEIVED)”)

request route {
route (REQINIT) ;
route (WSDETECT) ;

route [WSDETECT] {
if (proto == WS || proto == WSS) {
force rport();
if (is method (“REGISTER”)) {
fix nated register();
} else if (is_method(“INVITEINOTIFYISUBSCRIBE”)) {
add contact alias();

route [WITHINDLG] {

if (has totag()) {
if (loose route()) {
if (!isdsturiset()) {

handle ruri alias();

4/3/2014 © Acision 2014

Q Using nathelper on SIP over WebSocket responses

onreply route {
if ((proto == WS || proto == WSS) && status =~ “[12][0-9]1[0-91") {
add contact alias();

}

4/3/2014 © Acision 2014

WebSocket connections are always behi

» Use mediaproxy-ng from SIPWise

https://qithub.com/sipwise/mediaproxy-ng

« Companion Kamailio module: rtpproxy-ng

http://kamailio.orq/docs/modules/stable/modules/rtpproxy-nq.html

« SIP Signalling is proxied instead of B2ZBUA'd (that
IS, not broken)

4/3/2014 © Acision 2014

https://github.com/sipwise/mediaproxy-ng
https://github.com/sipwise/mediaproxy-ng
https://github.com/sipwise/mediaproxy-ng
https://github.com/sipwise/mediaproxy-ng
http://kamailio.org/docs/modules/stable/modules/rtpproxy-ng.html
http://kamailio.org/docs/modules/stable/modules/rtpproxy-ng.html
http://kamailio.org/docs/modules/stable/modules/rtpproxy-ng.html
http://kamailio.org/docs/modules/stable/modules/rtpproxy-ng.html

modparam(“rtpproxy-ng”, “rtpproxy sock”, “udp:localhost:22223")
route [LOCATION] {

t on failure(“UA FATLURE”) ;
}

failure route[UA FAILURE] ({

if (t check status(“488”) && sdp content()) {
if (sdp get line startswith(“Savp(mline)”, “m=")) {
if (Savp(mline) =~ “SAVPE”)) ({
savp (rtpproxy offer flags) = “froc-sp”;
$avp (rtpproxy answer flags) = “froc+SP”;
} else {
savp (rtpproxy offer flags) = “froc+SP”;
$avp (rtpproxy answer flags) = “froc-sp”;
}
In a production system you probably need to catch
“RTP/SAVP” and “RTP/AVPF” and handle them correctly
too

}

append branch () ;

rtpproxy offer(Savp(rtpproxy offer flags));
t on reply (“RTPPROXY REPLY”);

route (RELAY) ;

4/3/2014 © Acision 2014

Q Handle replies to the retried INVITE

modparam (“rtpproxy-ng”, “rtpproxy sock”, “udp:localhost:22223")

failure route[UA FAILURE] ({

t on reply (“"RTPPROXY REPLY");
route (RELAY) ;

onreply route[RTPPROXY REPLY] {

if (status =~ “18[03]"”) {
mediaproxy-ng only supports SRTP/SDES - early media
won't work so strip it out now to avoid problems
change reply status (180, “Ringing”);
remove body () ;

} else if (status =~ “2[0-9][0-9]” && sdp content()) {
rtpproxy answer (Savp (rtpproxy answer flags));

4/3/2014 © Acision 2014

Current mediaproxy-ng limitations

* No support for SRTP/DTLS

— SRTP/DTLS is a MUST for WebRTC and
SRTP/SDES is a MUST NOT

— mediaproxy-ng works with Google Chrome today
(but Google will be removing SRTP/SDES over the
next year)

— mediaproxy-ng does not work with Firefox at this
time

* Does not support “bundling”/"unbundling”

— WebRTC can “bundle” audio and video streams
together, but mediaproxy-ng does not support this
yet

— Google Chrome does not currently support
“unbundling”

— You can have an audio stream, or a video stream,
but not an audio and video stream at this time

RTPEngine is coming

4/3/2014 © Acision 2014

HOWTO: Authenticate SIP using a web-service

No communication required between
authentication server and Kamailio

Credentials expire (the expiry time is chosen
by the authentication server)

Extract username and password from the
“GET” used for HTTP handshake and
authenticate there, or

Use the credentials for digest authentication
of SIP requests

Check the From-URI or To-URI in SIP
headers match the user part of the credentia

http://kamailio.orq/docs/modules/stable/module

http://kamailio.org/docs/modules/stable/modules/auth_ephemeral.html
http://kamailio.org/docs/modules/stable/modules/auth_ephemeral.html

Ephemeral Authentication

Web

Service BRZaUrS

ReST

Shared secret -
communication
UA link not required

Calling

Sip

You don't h t SIP '

ou don ave to

create or manage i Called UA
accounts on the

SIP

Proxy/registrar

4/3/2014 © Acision 2014

tcp accept no cl=yes
modparam(“auth ephemeral”, “secret”, “kamailio rules”)
modparam (“htable”, “htable”, “wsconn=>size=8;")
event route[xhttp:request] {
URI format is /?username=foo&password=bar
$var (uri params) = $(hu{url.querystring}):;
$var (username) = $(var (uri params) {param.name,username,&});

Svar (password) $(var (uri params) {param.name,password, &});
Note: username and password could also have been in a Cookie: header

if (!autheph authenticate(“S$var (username)”, “Svar (password)”)) {
xhttp reply(“403”, “Forbidden”, “”, “7);
exit;
}
if (ws_handle handshake()) {
Ssht (wsconn=>$si:$sp::username) = $var (username)
exit;

event route[websocket:closed] {
Svar (regex) = $si + “:” Ssp + “.*7;
sht rm name re(“wsconn=>$var(regex)”);

4/3/2014 © Acision 2014

request route {
route (REQINIT) ;
route (WSDETECT) ;

if (! (proto == WS || proto == WSS))
route (AUTH) ;

route [WSDETECT] {

if (proto == WS || proto == WSS) {
Svar (username) = (str) $sht(wsconn=>$si:$sp::username);
if (Svar (username) == 3Snull || S$var(username) == “7) {

send reply(“403”, “Forbidden”);
ws close (1008, “Policy Violation”);
exit;

if (!autheph check timestamp(“$var (username)”)
|| (is_method(“REGISTERIPUBLISH”)
&& !autheph check to(“Svar (username)”))
|| ('has totag() && !autheph check from(“Svar (username)”))) {
send reply (4037, “Forbidden”):;
ws close (1008, “Policy Violation”):;
exit;

force rport();

4/3/2014 © Acision 2014

4/3/2014

Q

Questions?

© Acision 2014

Email:
Twitter: @pdunkley

25

mailto:peter.dunkley@acision.com

