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Evolution on the web
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in Gmail (W3C
releases 1st draft in
2006) — the dawn
of web-apps
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WebRTC
implementations
become available



Revolution In telecoms

Before today the operators (big and small)
had full control over real-time
communications because it was hard to do
and substantial infrastructure investment
was required.
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RTCWeb

There are a number of proprietary
Implementations that provide direct interactive
rich communication using audio, video,
collaboration, games, etc. between two peers'
web-browsers. These are not interoperable, as

they require non-standard extensions or plugins
to work. There is a desire to standardize the
basis for such communication so that
interoperable communication can be established
between any compatible browsers.

Real-Time Communication in WEB-
Browsers (rtcweb) 2013-03-13 charter




WebRTC

The mission of the Web Real-Time Communications
Working Group, part of the Ubiquitous Web
Applications Activity, is to define client-side APIs to
enable Real-Time Communications in Web
browsers.

These APIs should enable building applications that

can be run inside a browser, requiring no extra
downloads or plugins, that allow communication
between parties using audio, video and
supplementary real-time communlcatlon without
having to use intervening servers (unless needed for
firewall traversal, or for providing intermediary
services).

Web Real-Time Communications Working
Group Charter




RTCWeb and WebRTC: not the same thi

« RTCWeb is the on-the-wire protocol as defined by
the IETF and may be used in many applications
and systems

— Within VoIP phones
— On network servers
— Includes MTI codecs for audio and video

« WebRTC is the browser API as defined by the IETF



Q RTCWeb/WebRTC Architecture

The web

Your
browser

Based on the diagram from http://www.webrtc.org/reference/architecture
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Signalling not included

« Google made a controversial (but very wise)
decision not to specify how the signalling
should work

« Signalling is required
— To discover who to communicate with

— To exchange information on what the
communication should be (audio, data, video,
and codecs)

« Even the simplest, proprietary, RESTful
exchange is signalling



Interoperability is sometimes required

 These use-cases are typically ones where the point
of the application is communication

* For example:

— Conferencing — calls in and out of legacy networks are
required

— Call Centres — calls in and out of legacy networks are
required

— Virtual PBX — calls in and out of legacy networks are
required
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Q The signalling trapezoid

Server @EIGLOEIITIR Server

Media
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Signalling options

* Open standards are usually best
— SIP over WebSocket, http://tools.ietf.org/html/rfc7118

— XMPP over WebSocket, http://tools.ietf.org/html/draft-m offitt-
Xxmpp-over-websocket

— OpenPeer, http://openpeer.org/
« The WebRTC API is easy but signalling is often hard

— There are many open-source libraries that do the signalling
— The library APls vary in complexity to meet every need

— Hosted infrastructure lets you add real-time communications
to your website without having to build a network yourself
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Q HOWTO: Kamailio as a SIP over WebSocket server

 Download, build, and install Kamailio 4.1

* Create a kamailio.cfg file based on the
following code snippets

http://www.kamailio.org/



http://www.kamailio.org/
http://www.kamailio.org/

Q Handling WebSocket handshakes in Kamailio

tcp accept no cl=yes
event route[xhttp:request] {
set reply close();
set reply no connect();
if (Shdr (Upgrade)=~"websocket"
&& Shdr (Connection)=~"Upgrade"
&& Srm=~"GET") {
# Validate as required (Host:, Origin:, Cookie:)
if (ws_handle handshake () )

exit;

xhttp reply("404", "Not Found", "", "");
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WebSocket connections are always behi

e Javascript applications cannot see the real IP
address and port for the WebSocket connection

* This means that the SIP server cannot trust
addresses and ports in SIP messages received
over WebSockets

« nathelper and/or outbound can be used to solve
this problem



Q Using nathelper on SIP over WebSocket requests

modparam (“nathelper|registrar”, “received avp”, “Savp(RECEIVED)”)

request route {
route (REQINIT) ;
route (WSDETECT) ;

route [WSDETECT] {
if (proto == WS || proto == WSS) {
force rport();
if (is method (“REGISTER”)) {
fix nated register();
} else if (is_method(“INVITEINOTIFYISUBSCRIBE”)) {
add contact alias();

route [WITHINDLG] {

if (has totag()) {
if (loose route()) {
if (!isdsturiset()) {

handle ruri alias();

4/3/2014 © Acision 2014



Q Using nathelper on SIP over WebSocket responses

onreply route {
if ((proto == WS || proto == WSS) && status =~ “[12][0-9]1[0-91") {
add contact alias();

}
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WebSocket connections are always behi

» Use mediaproxy-ng from SIPWise

https://qithub.com/sipwise/mediaproxy-ng

« Companion Kamailio module: rtpproxy-ng

http://kamailio.orq/docs/modules/stable/modules/rtpproxy-nq.html

« SIP Signalling is proxied instead of B2ZBUA'd (that
IS, not broken)
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modparam(“rtpproxy-ng”, “rtpproxy sock”, “udp:localhost:22223")
route [LOCATION] {

t on failure(“UA FATLURE”) ;
}

failure route[UA FAILURE] ({

if (t check status(“488”) && sdp content()) {
if (sdp get line startswith(“Savp(mline)”, “m=")) {
if (Savp(mline) =~ “SAVPE”)) ({
savp (rtpproxy offer flags) = “froc-sp”;
$avp (rtpproxy answer flags) = “froc+SP”;
} else {
savp (rtpproxy offer flags) = “froc+SP”;
$avp (rtpproxy answer flags) = “froc-sp”;
}
# In a production system you probably need to catch
# “RTP/SAVP” and “RTP/AVPF” and handle them correctly
# too

}

append branch () ;

rtpproxy offer(Savp(rtpproxy offer flags));
t on reply (“RTPPROXY REPLY”);

route (RELAY) ;
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Q Handle replies to the retried INVITE

modparam (“rtpproxy-ng”, “rtpproxy sock”, “udp:localhost:22223")

failure route[UA FAILURE] ({

t on reply (“"RTPPROXY REPLY");
route (RELAY) ;

onreply route[RTPPROXY REPLY] {

if (status =~ “18[03]"”) {
# mediaproxy-ng only supports SRTP/SDES - early media
# won't work so strip it out now to avoid problems
change reply status (180, “Ringing”);
remove body () ;

} else if (status =~ “2[0-9][0-9]” && sdp content()) {
rtpproxy answer (Savp (rtpproxy answer flags));
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Current mediaproxy-ng limitations

* No support for SRTP/DTLS

— SRTP/DTLS is a MUST for WebRTC and
SRTP/SDES is a MUST NOT

— mediaproxy-ng works with Google Chrome today
(but Google will be removing SRTP/SDES over the
next year)

— mediaproxy-ng does not work with Firefox at this
time

* Does not support “bundling”/"unbundling”

— WebRTC can “bundle” audio and video streams
together, but mediaproxy-ng does not support this
yet

— Google Chrome does not currently support
“unbundling”

— You can have an audio stream, or a video stream,
but not an audio and video stream at this time

RTPEngine is coming
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HOWTO: Authenticate SIP using a web-service

No communication required between
authentication server and Kamailio

Credentials expire (the expiry time is chosen
by the authentication server)

Extract username and password from the
“GET” used for HTTP handshake and
authenticate there, or

Use the credentials for digest authentication
of SIP requests

Check the From-URI or To-URI in SIP
headers match the user part of the credentia

http://kamailio.orq/docs/modules/stable/module



http://kamailio.org/docs/modules/stable/modules/auth_ephemeral.html
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tcp accept no cl=yes
modparam(“auth ephemeral”, “secret”, “kamailio rules”)
modparam (“htable”, “htable”, “wsconn=>size=8;")
event route[xhttp:request] {
# URI format is /?username=foo&password=bar
$var (uri params) = $(hu{url.querystring}):;
$var (username) = $(var (uri params) {param.name,username,&});

Svar (password) $(var (uri params) {param.name,password, &});
# Note: username and password could also have been in a Cookie: header

if (!autheph authenticate(“S$var (username)”, “Svar (password)”)) {
xhttp reply(“403”, “Forbidden”, “”, “7);
exit;
}
if (ws_handle handshake()) {
Ssht (wsconn=>$si:$sp::username) = $var (username)
exit;

event route[websocket:closed] {
Svar (regex) = $si + “:” Ssp + “.*7;
sht rm name re(“wsconn=>$var(regex)”);
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request route {
route (REQINIT) ;
route (WSDETECT) ;

if (! (proto == WS || proto == WSS))
route (AUTH) ;

route [WSDETECT] {

if (proto == WS || proto == WSS) {
Svar (username) = (str) $sht(wsconn=>$si:$sp::username);
if (Svar (username) == 3Snull || S$var(username) == “7) {

send reply(“403”, “Forbidden”);
ws close (1008, “Policy Violation”);
exit;

if (!autheph check timestamp(“$var (username)”)
|| (is_method(“REGISTERIPUBLISH”)
&& !autheph check to(“Svar (username)”))
|| ('has totag() && !autheph check from(“Svar (username)”))) {
send reply (4037, “Forbidden”):;
ws close (1008, “Policy Violation”):;
exit;

force rport();
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Questions?
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Email:
Twitter: @pdunkley
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