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How did it work in the past?

* Bootstrap target chroots once

* For each target, manually do:
- pkg/kamailio/deb/$target — debian/
- dpkg-buildpackage -S
— source packages — chroot
- dpkg-buildpackage

- reprepro
* For each new release, resulting in
— Non-reproducable builds

- Potentially broken dependencies
— Still, better than nothing!




Continuous Integration
to the rescue

 Jenkins CI

* Jenkins-debian-glue

Pardon, what?




A Primer to Continuous Integration
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A brief intro to Jenkins CI

* An application that monitors executions of
repeated jobs

* Specifically for

- Building and testing of software projects

— Monitoring executions of external jobs
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Software:

Cowbuilder: http://packages.debian.org/sid/cowbuilder
Debian: hitp://debian.org

Flask: http:/iflask.po
Git: http://git-scm.col
Grml: http://grml.org
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Jenkins: http://jenkins-ci.org

Jenkins-debian-glue: https://github.com/mikafjenkins-debian-glue

Kantan: https://github.com/mika/kantan

Reprepro: http://mirrorer.alioth.debian.org

Selenium: htip://seleniumhq.org

Selenium-webdriver + rspec: https://github.com/mika/sip-
provider-selenium-webdriver-tests

Subversion: http://subversion.tigris.org
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Software:

Cowbuilder: http://packages.debian.org/sid/cowbuilder

Debian: http://debian.org

Flask: http://iflask.pocoo.org

Git: http://git-scm.com
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Selenium: htip://seleniumhq.org

Selenium-webdriver + rspec: https://github.com/mika/sip-
provider-selenium-webdriver-tests

Subversion: http://subversion.tigris.org
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The Build Architecture

e Currently four types of jobs
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~3h overall build time per release for all targets and architectures

(i386 and amd64 for Debian squeezy, wheezy and jessie and Ubuntu Precise)



The Build Architecture

e Distributed Cloud Infrastructure amazon
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You can replicate the setup

* 100% open source

* General Information on Michael Prokop's blog

http://michael-prokop.at/blog/2014/03/25/building-debianubuntu-packages-on-ec2/

* Documented in our repo at

https://github.com/sipwise/kamailio-deb-jenkins




What's next?

* Build per push only makes sense with testing

* Improve overall test coverage @

* Introduce lint/static tests

* Introduce long-term tests
(mem leaks, performance degrations)

* Improve and automate system integration tests
(black-box tests of module functions)



What about Code Review?

* Do we want to use Gerrit?

- Everybody pushes branches to
Gerrit

- Jenkins signs it off if tests are ok

— Core Devs review, iterate and
approve — automatic merge

- Feedback and code in one place




How you can help?

e Let's start a discussion about what makes

Sense

* How to motivate ourselves to write tests?

* Anyone with experience on anything mentioned
here willing to share experience?

HELP

- Code tests/analysis

— Gerrit use cases

WANTED |



Questions?

<agranig@sipwise.com>
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