

The new Kamailio Build System

Andreas Granig
<agranig@sipwise.com>

deb.kamailio.org

squeeze, wheezy,
jessie

Precise

stable nightly
4.1, 4.0, 3.3 master, 4.1, 4.0, 3.3

amd64 i386

How did it work in the past?
● Bootstrap target chroots once
● For each target, manually do:

– pkg/kamailio/deb/$target → debian/
– dpkg­buildpackage ­S

– source packages → chroot
– dpkg­buildpackage

– reprepro

● For each new release, resulting in
– Non-reproducable builds
– Potentially broken dependencies
– Still, better than nothing!

Continuous Integration
to the rescue

● Jenkins CI
● Jenkins-debian-glue

Pardon, what?

A Primer to Continuous Integration

A brief intro to Jenkins CI

● An application that monitors executions of
repeated jobs

● Specifically for
– Building and testing of software projects
– Monitoring executions of external jobs

How Jenkins CI works (in theory)

unit
tests

source
build

binary
build

package
build

integration
tests

repository
update

git push
trigger

Catch errors early and often!

Woah, hold on for a second!

How it works for Kamailio today

nightly
build

releases
and

snapshots

new
commits

found

new
tags

found

The Build Architecture

● Currently four types of jobs

source
jobs

binaries
jobs

piuparts
jobs

repos
jobs

~3h overall build time per release for all targets and architectures
(i386 and amd64 for Debian squeezy, wheezy and jessie and Ubuntu Precise)

The Build Architecture
● Distributed Cloud Infrastructure

Jenkins-Master
on

EC2 m1.small

poll git.sip-router.org for changes

source & repos
jobs fire up

Jenkins-Slaves

Jenkins-Slave
on

EC2 m1.large

binaries & piuparts
jobs

Jenkins-Slave
on

EC2 m1.large

binaries & piuparts
jobs

Jenkins-Slave
on

EC2 m1.large

binaries & piuparts
jobs

Jenkins-Slave
on

EC2 m1.large

binaries & piuparts
jobs

You can replicate the setup

● 100% open source
● General Information on Michael Prokop's blog

http://michael­prokop.at/blog/2014/03/25/building­debianubuntu­packages­on­ec2/

● Documented in our repo at
https://github.com/sipwise/kamailio­deb­jenkins

What's next?
● Build per push only makes sense with testing
● Improve overall test coverage
● Introduce lint/static tests
● Introduce long-term tests

(mem leaks, performance degrations)
● Improve and automate system integration tests

(black-box tests of module functions)

What about Code Review?

● Do we want to use Gerrit?
– Everybody pushes branches to

Gerrit
– Jenkins signs it off if tests are ok
– Core Devs review, iterate and

approve → automatic merge
– Feedback and code in one place

How you can help?
● Let's start a discussion about what makes

sense
● How to motivate ourselves to write tests?
● Anyone with experience on anything mentioned

here willing to share experience?
– Code tests/analysis
– Gerrit use cases

Questions?

<agranig@sipwise.com>

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

