The new Kamailio Build System

< <§§:

debian
IKAMAILIO
ubuntu

Andreas Granig

<agranig@sipwise.com>

deb.kamailio.org

(_\‘
KAMAILIO

Dl

stable nightly
41,4.0, 3.3 master, 4.1, 4.0, 3.3

2

S ®

debian ubuntu
squeeze, wheezy, Precise
jessie

amdo4 1386

How did it work in the past?

* Bootstrap target chroots once

* For each target, manually do:
- pkg/kamailio/deb/$target — debian/
- dpkg-buildpackage -S
— source packages — chroot
- dpkg-buildpackage

- reprepro
* For each new release, resulting in
— Non-reproducable builds

- Potentially broken dependencies
— Still, better than nothing!

Continuous Integration
to the rescue

 Jenkins CI

* Jenkins-debian-glue

Pardon, what?

A Primer to Continuous Integration

SOURCE
CONTROL

L
DEVELOPMENT

5

o
S
=
=

=)

TESTING

A brief intro to Jenkins CI

* An application that monitors executions of
repeated jobs

* Specifically for

- Building and testing of software projects

— Monitoring executions of external jobs

git push
trigger

J

unit
tests

source
build

binary
build

package
build

How Jenkins CI works (in theory)

integration
tests

J

repository
update

SIp:WISE

—
project | subversion repositories, >30 custom | project
foo software projects for sip:provider bar (5

‘< v conumi >
pstream project

Local branches

check modified files on subversion
server, are any of them part of the ngep
project? if so trigger their according
jenkins job $project-source

Sipwise Git server

Subversion

build Debian source
package without any
changes

build Debian source

execute jenkins package with auto-

promote build artifacts to job
Sproject-binaries
generated snapshot

changelog + raise build Debian binary package
package version for all architectures

selected versions of projects will
be triggered using the according
Sproject-source jenkins job

install Debian package in
\d C‘;‘;;Iease project specific repository
(for testing/development)

Release Dashboard
(flask webapp)

did the build parameters.
include a release string?

install Debian package in copy Debian package to
release repository (stable release-trunk repository
release) (bleeding edge/Cl testing)

Release Manager(s)

rml
Deployment
IS0
(customized
grm

build)

Kantan

(automated
KVM suite,

Deployment Pipeline at Sipwise.com

Select task in
boot menu
(rescue
system,
platform

installation
incl. which
version)

—

running on physical
hardware?

Platform installation

Debian installation
(grml-debootstrap)

depending on user
selection and/or
bootoptions installs
according CE/PRO
versions of the
platform

sip:providerCE/PRO
installation

depending on sip:provider

version uses relea
or a specific rels
repository (e.g. ver:

se-trunk
lease
sion 2.2)

Webinterface tests
(selenium webdriver)

'\

Testing/QA

Backend Tests

\

running
sip:

provider

system

. Ship
.

Customer

VirtualBox
+
VMware
Images

Final sip:provider product

Legend:

Major specific part
. Software solution in _
Product Development e
pipeline selection

People

Software:

Cowbuilder: http://packages.debian.org/sid/cowbuilder
Debian: hitp://debian.org

Flask: http:/iflask.po
Git: http://git-scm.col
Grml: http://grml.org

€00.0rg
m

Jenkins: http://jenkins-ci.org

Jenkins-debian-glue: https://github.com/mikafjenkins-debian-glue

Kantan: https://github.com/mika/kantan

Reprepro: http://mirrorer.alioth.debian.org

Selenium: htip://seleniumhq.org

Selenium-webdriver + rspec: https://github.com/mika/sip-
provider-selenium-webdriver-tests

Subversion: http://subversion.tigris.org

Sip:WisE

Deployment Pipeline at Sipwise.com

seveioeers . . .

—

project subversion repositories, >30 custom project
foo saftware projects for sip:provider bar

<

o cori —

Subversion

check modified files on subversion
server, are any of them part of the ngep
project? if so trigger their according
jenkins job $project-source

| =/

hold onforas

pstream project

Local branches

Sip:WisE

Grml Select task in
Deployment boot menu
1SO (rescue
(customized system,
grml platform
build) installation
incl. which
version)

—

Kantan
(automated
KVM suite)

running on physical

hardware?

H::;EQLD VM-specific
partitioning partitioning

Platform installation

Debian installation
(grml-debootstrap)

Legend:

Software

Product

People

Major specific part
solution in
Development
pipeline

User
selection

Project

Software:

Cowbuilder: http://packages.debian.org/sid/cowbuilder

Debian: http://debian.org

Flask: http://iflask.pocoo.org

Git: http://git-scm.com

Grml: http://grml.org

Jenkins: http://jenkins-ci.org

Jenkins-debian-glue: https://github.com/mikafjenkins-debian-glue

Kantan: https://github.com/mika/kantan

Reprepro: http://mirrorer.alioth.debian.org

Selenium: htip://seleniumhq.org

Selenium-webdriver + rspec: https://github.com/mika/sip-
provider-selenium-webdriver-tests

Subversion: http://subversion.tigris.org

new
commits
found

How it works for Kamailio today

new
tags
found

releases
and
snapshots

The Build Architecture

e Currently four types of jobs

o000

source
jobs

kamailio41-nig

htly-binaries

kamailio41-n

ightly-piuparts

kamailio41-n

ightly-repas

kamailic41-n

ightly-source

binaries
jobs =

3 days 7 hr - #30

1 mo 4 days - #7

3 days 5 hr- #22

3 days 7 hr - #26

piuparts — repos
jobs jobs

1 mo 5 days - £4 14 min

" 10 min

~3h overall build time per release for all targets and architectures

(i386 and amd64 for Debian squeezy, wheezy and jessie and Ubuntu Precise)

The Build Architecture

e Distributed Cloud Infrastructure amazon

web services™
Jenkins-Master @

poll git.sip-router.org for changes IP R UTER
| . SIP-ROUTER
QO

EC2m1.small &

source & repos
jObS fire up

Jenkins-Slaves

Jenkins-Slave
on
EC2 m1.large

Jenkins-Slave
on
EC2 m1.large

binaries & piuparts binaries & piuparts
jobs jobs

You can replicate the setup

* 100% open source

* General Information on Michael Prokop's blog

http://michael-prokop.at/blog/2014/03/25/building-debianubuntu-packages-on-ec2/

* Documented in our repo at

https://github.com/sipwise/kamailio-deb-jenkins

What's next?

* Build per push only makes sense with testing

* Improve overall test coverage @

* Introduce lint/static tests

* Introduce long-term tests
(mem leaks, performance degrations)

* Improve and automate system integration tests
(black-box tests of module functions)

What about Code Review?

* Do we want to use Gerrit?

- Everybody pushes branches to
Gerrit

- Jenkins signs it off if tests are ok

— Core Devs review, iterate and
approve — automatic merge

- Feedback and code in one place

How you can help?

e Let's start a discussion about what makes

Sense

* How to motivate ourselves to write tests?

* Anyone with experience on anything mentioned
here willing to share experience?

HELP

- Code tests/analysis

— Gerrit use cases

WANTED |

Questions?

<agranig@sipwise.com>

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

