

Kamailio: Tips, Tricks & Notes from the
Field

Alex Balashov – Evariste Systems LLC
Atlanta, GA, USA

http://www.evaristesys.com/

Evariste Systems?

● Software vendor:
● CSRP - Class 4 routing (LCR), rating and accounting product

for delivering SIP trunking to retail and wholesale customers.

● Kamailio consultancy
● Professional services related to CSRP.
● Strong focus on PSTN interconnection in North America.
● Custom Kamailio projects.
● Miscellaneous VoIP engineering and consultancy.

Tips, tricks and notes from the field!

● Started working with OpenSER in late 2006.
● Life since then is Kamailio/OpenSER all day, every day.
● Some things I've learned.

– A lot of it is buried in Kamailio documentation, but it doesn't
mean one paid attention to it.

– What is self-evident to one person is not to another.
● The hope is that something here was non-obvious

to you.

#1: usrloc db_mode when sharing DB

If you have two active proxies storing
registration bindings and sharing the same
database (using database backing for the
usrloc module), use db_mode 3.

Alternately, if you have two proxies using
Different database servers with master-master
replication running between them, also use
db_mode 3.

The other modes cause the respective proxies
to kick each other's contacts out of the location
table.

#2: TM 'failure_reply_mode' parameter

● In master:7f0cdd2 (3.0.2 release), the
failure_reply_mode modparam was added to control
retention of branch data in serial forking.

● If you want behaviour compatible with Kamailio <=
1.5.x (all previous branches discarded), set:
modparam("tm", "failure_reply_mode", 3)

● This is set by default in the stock config, as of
master:cba4663.

#3: Arrays are a thing!

● AVPs can be made into arrays.

 $(avp(x)[0]) = 'a';
 $(avp(x)[1]) = 'b';

 $(avp(x)[2]) = 'c';

● Because they are implemented as lists internally.
● Not just AVPs – some other types of pseudovariables as well:

– $hdr(...) - headers
– But not user variables - $var(...).

#4: (X)AVP arrays are LIFO stacks

However, (X)AVPs are LIFO (Last In First Out) stacks:
 $(avp(x)[0]) = 'a';
 $(avp(x)[1]) = 'b';
 $(avp(x)[2]) = 'c';

 $var(i) = 0;

 while(is_avp_set(“$(avp(x)[$var(i)])“)) {
 xlog("L_INFO", "Array value [$var(i)]: $(avp(x)[$var(i)])\n");
 $var(i) = $var(i) + 1;
 }

… prints …
INFO: Array value [0]: c
INFO: Array value [1]: b
INFO: Array value [2]: a

#4: AVPs are LIFO stacks (cont'd)

Therefore, this is the right way to iterate over an array in FIFO order:

$var(i) = 2;

while(is_avp_set(“$(avp(x)[$var(i)])“)) {
 xlog("L_INFO", "Array value [$var(i)]: $(avp(x)[$var(i)])\n");
 $var(i) = $var(i) ­ 1;
}

#5: syn_branch

● Prior to 4.0.x, the syn_branch core
parameter existed.
– Caused the same, simple branch value to

be reused on stateless forwarding, and
also to stateful forwarding of end-to-end
ACKs for 2xx requests.

– It was on (set to 1) by default!

– It caused a lot of problems with equipment
that didn't like non-unique branch IDs.

#5: syn_branch (cont'd)

● In 4.1.x, Henning Westerholt removed it!
(master:6287cae)
– From commit: „the performance reason that motivated

this functionality are today not valid anymore...“

● Vielen Dank, Henning!

#6: local request event_route (TM)

● Endogenously-generated requests

– Such as synthetic BYEs generated by the dialog module on
dialog timeout

● … don't come through normal request routes.
● So, if you need to intercept these for accounting:

event_route[tm:local­request] {

 xlog("L_INFO", "[R­TM­LOCAL­REQUEST:$ci] Local request $rm to $ru\n");

}

#7: Non­local bind for failover

● Don't harness Kamailio inside OCF resource agent scripts
for Heartbeat.
– Too complicated.

● Enable non-local bind kernel option:
– echo 1 > /proc/sys/net/ipv4/ip_nonlocal_bind

● Kamailio can then bind to the shared IP interface,
even if it is not homed on the secondary host.

● Will start receiving traffic when the interface
swings over.

#8: Don't use old core functions

● Don't use rewritehostport(),
force_send_socket() & friends.

● They don't accept pseudovariable arguments.
● Modify the request URI instead:

– $ru

● Or the destination set, if you need to:
– $du

● For send socket: $fs

#9: Calling request_routes from
failure_routes

● You can do it.
● You just need to be careful about not doing things from

your request_route that you can't do in a
failure_route context.

● Particularly:
– Be sure you send all your replies statefully.

– Or using send_reply(), which automatically sends
replies statelessly if there is no transaction, or
statefully if there is.

#10: append_branch()

● You don't really need it anymore in serial forking
cases (circa master:22f1b99)
– In normal failover routing cases.

● Just modify RURI, t_relay(), and a new branch
will automatically be created.

● Still needed for parallel forking.

#11: $dlg_var(...)

● Store dialog-persistent variables there:
– $dlg_var(key) = 'val';

● If you're tracking all dialogs anyway, very convenient.
● No need to deal with clunky Record-Route parameter

manipulation anymore.
● Caveat: Only available when processing

sequential requests (after loose_route()).

#12: Accessing replies from
failure_route

● failure_routes correspond to a branch failure,
not a negative reply per se.

● But pseudovariable attributes of the winning reply
(from the same transaction) can be accessed:
– $T_rpl(...) container holds these.

– e.g. $T_rpl($rs) = reply code of winning reply

#13: Evaluating PVs in string
assignment context

● Substitution of PVs in string literals will be done in
function arguments (ones which accept Pvs):
– xlog(“L_INFO“, “Value is: $var(x)\n“);

● But not in bare string literals on assignment!
– $var(x) = “From URI: $fu“;

– This will be evaluated literally.

#13: Evaluating PVs in string
assignment context (cont'd)

● So, concatenation is required:
– $ru = “sip“: $tU + “@“ + $var(domain);

● New pseudovariable container for this can help:
– $var(x) = $_s(sip:$tU@$var(domain));

#15: Base64 transformations

● {s.encode.base64} / {s.decode.base64}
– Contributed by Sipwise (master:12f441f), by Richard

Fuchs.

● Good for avoiding delimiter problems in
concatenated storage of SIP data.

● Thank you, Sipwise!

#14: Asynchronous side tasks

● Have I/O-bound activity on which message/call
processing does not depend?

● Put it on an mqueue.

● Consume it with rtimer.

– The rtimer module has a separate thread pool.

#15: uac_replace_from()/to()

● You can't call uac_replace_from()/to().

– Not if you want to take advantage of magical
concealment of From/To manipulations from the caller.

● Just manipulate a single PV with your desired caller
ID/caller display name values.
– Call uac_replace_from() at the end of your call

processing.

#16: Export your own statistics

● Use statistics module.
● Define your own modparams of statistics for it:

– modparam("statistics", "variable", "total_calls")

● Update them from route script:
– update_stat("total_calls", "+1");

● Easy to access via management interfaces (MI,
BINRPC).

That's all!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

