
Performance Management with Packetbeat &
Elasticsearch
Tudor Golubenco

@tudor_g

$ whoami

Intro

• Romanian living in Berlin

• Student @FOKUS in 2006, diploma project about handover in IMS
networks

• Joined Iptego, a young VoIP company

• CTO starting from 2009ish

Palladion

• Monitoring and troubleshooting for SIP (also RTP, RTCP, H.248,
ENUM, Diameter, etc.)

• Iptego acquired by Acme Packet (2012)

• Acme Packet acquired by Oracle (2013)

Got complex with metrics

• Each new metric added complexity to the application (written C)

• Large number of metrics (~500K metrics)

• Each new feature and protocol needed to support all metrics

Got really complex with
scalability

• We needed to show the global state
(i.e. total number of active calls,
end-to-end calls)

• Difficult when the data is distributed

It would be nice to have a
system just like Palladion to

monitor Palladion itself

Packetbeat

• Started by Monica Sarbu, first public version in 05.2014

• I joined full time 11.2014

monitoring and
troubleshooting for

distributed applications

Start from the communication

• The communication between
components gets you the big
picture

• Protocols are universal

• It’s objective

• No latency overhead

How it works

• Captures the wire traffic (libpcap, pfring, af_packet)

• Follows TCP streams, decodes HTTP, MySQL, PgSQL, Redis,
Thrift-RPC

• Looks for requests, waits for the matching response

• Records response time, URLs, response codes, etc

$ packetbeat -e -d “publish”

{
 "client_ip": "127.0.0.1",
 "client_port": 46981,
 "ip": “127.0.0.1",
 "query": "select * from test",
 "method": "SELECT",
 "pgsql": {
 "error_code": "",
 "error_message": "",
 "error_severity": "",
 "iserror": false,
 "num_fields": 2,
 "num_rows": 2
 },
 "port": 5432,
 "responsetime": 12,
 "bytes_out": 95,
 "status": "OK",
 "timestamp": "2015-05-27T22:27:57.409Z",
 "type": "pgsql"
}

Packetbeat + ELK

Why ELK?

• Already proven to scale and perform for logs

• Clear and simple flow for the data

• “Send the code where the data is, not the other way around”

• Powerful features that become simple:

• Drilling down to the transactions related to a peak

• Top N features are trivial

• Slicing by different dimensions is easy

Future plans

• Packet data is just the beginning

• Other sources of operational data:

• OS readings: CPU, memory, IO stats

• Code instrumentation

• API gateways

• Common servers internal stats (Nginx, Elasticsearch, Kamailio)

Joining Elastic

from __future__ import beats

The Beats

• Packetbeat - data from the wire

• Filebeat (Logstash-Forwarder) - data from log files

• Future:

• Topbeat - CPU, mem, IO stats

• Metricsbeat - arbitrary metrics from nagios/sensu like scripts

• RUMbeat - data from the browser

• Kamiliobeat (?)

Stay in touch

• @tudor_g / @packetbeat

• https://discuss.elastic.co/c/beats

• Sign up for the webinar:

• https://www.elastic.co/webinars/beats-platform-for-leveraging-
operational-data

https://www.elastic.co/webinars/beats-platform-for-leveraging-operational-data

