
SIPCAPTURE
WORKSHOP

Written by: Lorenzo Mangani, Alexandr Dubovikov

Contributors: Joseph Jackson, Doug Smith

About QXIP and SIPCAPTURE

QXIP BV {QuickSIP} is an Amsterdam based R&D Company specializing in Open-Source and Commercial
Voice Technology Development - Our flagship projects are SIPCAPTURE HOMER and PCAPTURE
based on our mature and open encapsulation protocol HEP/EEP (Extensible Encapsulation Protocol)

Our Open-Source solutions are deployed and trusted by thousands of businesses worldwide.

Our Customers include large telephony and network operators, voice service carriers, voip service
providers, cloud service providers, call center operators and voice equipment vendors.

Our Capture Technologies are natively implemented in all major OSS voip platforms such as Kamailio,
OpenSIPS, FreeSWITCH, Asterisk, RTPEngine and many tools such as sipgrep, sngrep and more.

For full details abour our projects and services please visit our website at http://qxip.net

http://qxip.net

{ }
#STACK

H E P E E P

S I P

R T P R T C P

L O G S C D R

Q O SJ S O N

S D P

Capture Servers

{ }
#STACK

H E P E E P

S I P

R T P R T C P

L O G S C D R

Q O SJ S O N

S D P

sipgrep Captagent

Capture Agents

Capture Servers

{ }
#STACK

H E P E E P

S I P

R T P R T C P

L O G S C D R

Q O SJ S O N

S D P

sipgrep Captagent

Capture Agents HEP Codebase

Capture Servers

< Your Code />

{ }
#STACK

H E P E E P

S I P

R T P R T C P

L O G S C D R

Q O SJ S O N

S D P

Meet #HOMER = VoIP & RTC Time Machine
100% Open Source VoIP Monitoring and Troubleshooting Tools

HOW THE HEP DOES
THIS WORK?

Meet #HOMER = VoIP & RTC Time Machine
100% Open Source VoIP Monitoring and Troubleshooting Tools

HOMER is part of the SIPCAPTURE stack, a robust, carrier-grade, scalable RTC and VoIP
Capture and Monitoring application with built in support out of the box in many leading
platforms, ready to process, index & store insane amounts of signaling, logs and statistics
and providing instant search, end-to-end analysis and drill-down capabilities for ITSPs,
VoIP Providers Trunk Suppliers as well as Enterprises and Developers using SIP signaling.

HOMER provides many features and advantages, including:

● Instant centralized access to present and past signaling & stats
● Full SIP/SDP payload retention with precise timestamping
● Automatic correlation of sessions, logs and reports
● Support for RTP and RTCP Media statistics and analytics
● Visual representation of multi protocol session call-flows
● Fast detection of usage and system anomalies
● System agnostic view of VoIP and RTC traffic flows
● Unlimited plug & play capture agents and HEP custom data feeds
● Multi-User and Customizable UI based on JS/Angular/D3
● PCAP Exporting and Sharing functionality with 3rd parties

… and much more!

 FIND ALL ABOUT HOMER: http://github.com/sipcapture/homer

HERE’S YOUR
SESSION, STICKY!

WHERE’S THAT CALL?
LET ME ASK..

HOMER!

INVITE (SDP) ...

http://github.com/sipcapture/homer

SIPCAPTURE HOMER Capture Architecture Elements
LET’S SETUP A

CAPTURE SERVER
FIRST!

HEP SETUP

CS:HEP CAPTURE SERVER (Includes API + UI)

The Capture Server Collects, Indexes and Stores SIP packets received from
Capture Agents using HEP/EEP, IPIP, JSON Payloads Encapsulation or RAW
SIP packets captured from Ethernet interfaces and mirrored switch ports,
using flexible rules, triggers and arbitrary statistics defined in the powerful,
extensible and fully customizable core capture plan (Kamailio or OpenSIPS)

CA:HEP CAPTURE AGENT(s)

The Capture Agent captures and sends encapsulated packets or json data
to a Capture Server using the HEP/EEP Encapsulation protocol via UDP/TCP

The Capture Agent role can be covered by multiple elements or native HEP modules
running on different platforms and distributed in a completely modular fashion, easy
to scale, grow and expand alongside the monitored infrastructure and systems,
allowing flexible support for any network topology including cloud scenarios.

SIPCAPTURE HOMER is composed of two basic building blocks / elements:

SIPCAPTURE HOMER Capture Architecture Elements
SIPCAPTURE HOMER is composed of two basic building blocks / elements:

CS:HEP CAPTURE SERVER (Includes API + UI)

The Capture Server Collects, Indexes and Stores SIP packets received from
Capture Agents using HEP/EEP, IPIP, JSON Payloads Encapsulation or RAW
SIP packets captured from Ethernet interfaces and mirrored switch ports,
using flexible rules, triggers and arbitrary statistics defined in the powerful,
extensible and fully customizable core capture plan (Kamailio or OpenSIPS)

CA:HEP CAPTURE AGENT(s)

The Capture Agent captures and sends encapsulated packets or json data
to a Capture Server using the HEP/EEP Encapsulation protocol via UDP/TCP

The Capture Agent role can be covered by multiple elements or native HEP modules
running on different platforms and distributed in a completely modular fashion, easy
to scale, grow and expand alongside the monitored infrastructure and systems,
allowing flexible support for any network topology including cloud scenarios.

NEXT, GRAB A
CAPTURE AGENT
OF YOUR CHOICE!

HEP SETUP

Inside the CAPTURE SERVER
Nuts and Bolts behind the HEP Sockets

PROTO

PAYLOA
DCHUNKS HE

P3
 /

EE
P

T Y P E

HE
P2

HE
P1

HOMER 5 capture servers can be based on
either Kamailio 4.4+ or OpenSIPS 2.2+
using the SIPCAPTURE module supporting
HEP / EEP functionality in combination with
any other available module to provide a
programmable and modular RTC packet
capture framework with no limitations and
no presets, ready to extend and customize

 Who’s best? Only YOU decide!

sipcapture proto_hep rr maxfwd tm

proto_udpcfgutils db_mysql sipmsgops uri exec

mmgeoip

sipcapture.opensips.cfg

2.2

HS

HEP Switching HEP Capture

sipcapture db_mysql pv textops tm sl

rtimer sqlops htable siputils exec geoip

sipcapture.kamailio.cfg

4.4

HEP Capture

Inside the CAPTURE SERVER
Built-in HEP functionality in Kamailio 4.4

LETS BUILD A
CAPTURE SERVER!

Inside the CAPTURE SERVER
Built-in HEP functionality in Kamailio 4.4

PROTO

PAYLOA
DCHUNKS HE

P3
 /

EE
P

T Y P E

HE
P2

HE
P1

#!KAMAILIO
Example configuration file for a sipcapture node
#

####### Global Parameters definitions #########
#
Please, make all your configuration changes here
#
*** To enable extra stats
- define WITH_STATISTIC_METHOD_EXTRA
- define WITH_STATISTIC_INVITE_1XX

#!substdef "!HOMER_DB_USER!homer_user!g"
#!substdef "!HOMER_DB_PASSWORD!homer_password!g"
#!substdef "!HOMER_LISTEN_PROTO!udp!g"
#!substdef "!HOMER_LISTEN_IF!0.0.0.0!g"
#!substdef "!HOMER_LISTEN_PORT!9060!g"
#!substdef "!HOMER_STATS_SERVER!tcp:HOMER_LISTEN_IF:8888!g"

SIPCAPTURE Capture Server: Preferences

sipcapture db_mysql pv textops tm sl

rtimer sqlops htable siputils exec geoip

sipcapture.kamailio.cfg

4.4

HEP Capture

Inside the CAPTURE SERVER
Built-in HEP functionality in Kamailio 4.4

PROTO

PAYLOA
DCHUNKS HE

P3
 /

EE
P

T Y P E

HE
P2

HE
P1

listen=HOMER_LISTEN_PROTO:HOMER_LISTEN_IF:HOMER_LISTEN_PORT

loadmodule "pv.so"
loadmodule "db_mysql.so"
loadmodule "sipcapture.so"
loadmodule "textops.so"
loadmodule "rtimer.so"
loadmodule "xlog.so"
loadmodule "sqlops.so"
loadmodule "htable.so"
loadmodule "tm.so"
loadmodule "sl.so"
loadmodule "siputils.so"
loadmodule "exec.so"

modparam("htable", "htable", "a=>size=8;autoexpire=400")
modparam("htable", "htable", "b=>size=8;autoexpire=31")
modparam("htable", "htable", "c=>size=8;autoexpire=31")
modparam("rtimer", "timer", "name=ta;interval=60;mode=1;")
modparam("rtimer", "exec", "timer=ta;route=TIMER_STATS")

SIPCAPTURE Capture Server: Modules

sipcapture db_mysql pv textops tm sl

rtimer sqlops htable siputils exec geoip

sipcapture.kamailio.cfg

4.4

HEP Capture

 #!ifdef WITH_HOMER_GEO
loadmodule "geoip.so"

 #!endif

 #!ifdef WITH_HOMER_CUSTOM_STATS
loadmodule "xhttp.so"
loadmodule "jansson.so"
loadmodule "avpops.so"

 #!endif

Inside the CAPTURE SERVER
Built-in HEP functionality in Kamailio 4.4

PROTO

PAYLOA
DCHUNKS HE

P3
 /

EE
P

T Y P E

HE
P2

HE
P1

####### Capture Logic ########

modparam("sipcapture", "db_url", "mysql://HOMER_DB_USER:HOMER_DB_PASSWORD@127.0.0.1
/homer_data")
modparam("sipcapture", "capture_on", 1)
modparam("sipcapture", "hep_capture_on", 1)
modparam("sipcapture", "insert_retries", 5)
modparam("sipcapture", "insert_retry_timeout", 10)
#modparam("sipcapture", "capture_node", "homer01")

#Stats time
stats.min = 5 desc "My stats TIME min"

Main SIP request routing logic

- processing of any incoming SIP request starts with this route

route {

For the full Configuration see:
github.com/sipcapture/homer-api/blob/master/examples/sipcapture/sipcapture.kamailio

 }

SIPCAPTURE Capture Server: Module Parameters

sipcapture db_mysql pv textops tm sl

rtimer sqlops htable siputils exec geoip

sipcapture.kamailio.cfg

4.4

HEP Capture

Install HOMER 5 in 5 minutes
Learn how to Install and use the SIPCAPTURE Stack

INSTALL ALL THE
THINGS!

bash <(curl -s https://cdn.rawgit.com/sipcapture/homer-installer/master/homer_installer.sh

Get started with the latest and greatest HOMER version in no time using the semi-automatic installer!

Get a vanilla Debian 8 or CentOS 7 net-install image up and running with no special settings.
Download and run the Homer 5 application installer [Apache2-PHP/MySQL-InnoDB/Kamailio|OpenSIPS/sipcapture]

HOMER 5

80/tcp

9060/udp

Apache2/PHP

Kamailio/OpenSIPS

MySQLN
ET

Packages + Services will be installed with minimal interaction. Once completed, login to the UI using the default settings.

That’s all - Easy wasn’t it? Here’s a quick diagram for the bundle you just installed:

… that's all!

Install HOMER 5 in 5 minutes
SIPCAPTURE basic stack using Homer-Installer on supported OSs

docker run -tid --name homer5 -p 80:80 -p 9060:9060/udp -p 9061:9061/tcp sipcapture/homer-docker
4280d228ae472c02eded508bf587fb0bde6bd1604b1fc65c0490d0648f6fbe06

docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
4280d228ae47 qxip/homer-docker "/run.sh" 1 minute ago Up 1 minutes 80/tcp,9060/udp 0c0f7939-5ab9-401e-af63-ce8728221d0b-n1/homer5

Pull and run the Docker Homer 5 application bundle [Apache2-PHP/MySQL-InnoDB/Kamailio-sipcapture]

Verify the Homer 5 container is running and all desired ports are published:

HOMER 5 (Docker)

80/tcp

9060/udp

Apache2/PHP

Kamailio/OpenSIPS

MySQLN
ET

Note down your IP for sending HEP traffic to your container using your favourite HEP/EEP Capture Agent:

… that's all!

Install HOMER 5 in 5 minutes
SIPCAPTURE public Homer-Docker image Single or Multi Container at http://github.com/sipcapture/homer-docker

http://github.com/sipcapture/homer-docker

Inside HOMER 5
Your very first Login

Congratulations! Your very own HOMER 5 capture server should be now up and running!

It’s time to login, get familiar with the available tools and configure preferences to handle and correlate data sessions

Default is
admin/test123

Can’t login? Your API
or DB are down!

Inside HOMER 5
Dashboard and Widget management

Homer 5 features a dynamic dashboard/widget system which can easily be extended using standard javascript and
AngularJS. All chart and form elements are user-defined and can be assembled based on requirements using the
provided examples feed either internal or external data sources, and synchronized to the master Time-Range selector

YOUR WIDGETS HERE

Inside HOMER 5
Search Form Widget management

Homer 5 is dynamic all the way to Forms. Shape your Search widgets and any number of custom Panels for your teams:

Inside HOMER 5
Search Results and Flow management

Signaling Search results are intuitive, customizable and designed to provide the quickest path for your Troubleshooting:

Inside HOMER 5
Search Results and Flow management

HOMER doesn’t stop here! Let’s add Correlated Logs to the mix…

Inside HOMER 5
Search Results and Flow management

HOMER doesn’t stop here! Let’s add Correlated Logs to the mix… how about some RTP/RTCP Media Statistics, too?

Inside HOMER 5

Looks and Sounds Great! There’s only one little problem . . .

Inside HOMER 5

Looks and Sounds Great! There’s only one little problem . . .

HEP/EEP
FEEDING HOMER

WE NEED SOME
CAPTURE AGENTS!

SIPTRACE Packet Capture
Integrated HEP functionality in Kamailio

ITS PRONOUNCED KA-
MAH-EH-LEE-OH

SIPTRACE Packet Capture
Integrated HEP functionality in Kamailio

PROTO

PAYLOA
DCHUNKS HE

P3
 /

EE
P

T Y P E

HE
P2

HE
P1

#!KAMAILIO
debug=1
log_stderror=no
memdbg=5
memlog=5
log_facility=LOG_LOCAL0
fork=yes
children=4
disable_tcp=yes

listen=udp:192.168.0.1:5060

/* port to listen to
port=5060

####### Modules Section ########
mpath="/usr/local/lib64/kamailio/modules_k/:/usr/local/lib64/kamailio/modules/"

loadmodule "mi_fifo.so"
loadmodule "kex.so"
loadmodule "tm.so"
loadmodule "sl.so"
loadmodule "rr.so"
loadmodule "pv.so"
loadmodule "maxfwd.so"
loadmodule "xlog.so"
loadmodule "textops.so"
loadmodule "siputils.so"

#Siptrace
loadmodule "siptrace.so"
modparam("siptrace", "duplicate_uri", "sip:10.0.0.1:9060")
modparam("siptrace", "hep_mode_on", 1)
modparam("siptrace", "trace_to_database", 0)
modparam("siptrace", "trace_flag", 22)
modparam("siptrace", "trace_on", 1)

####### Routing Logic ########
Main SIP request routing logic
route {
 sip_trace(); # duplicate all SIP messages
 setflag(22); # enable capture by TM/SL

 route(RELAY);
}

onreply_route {
 sip_trace(); # duplicate all response SIP messages

}

route[RELAY] {
 if (!t_relay()) {
 sl_reply_error();
 }
 exit;
}

SIPTRACE

SIPTRACE Capture AgentSIPTRACE Capture Agent

SIPTRACE Packet Capture
Advanced HEP functionality in OpenSIPS

TRY THE NEW HEP-
SWITCH TOOLS

SIPTRACE Packet Capture
Advanced HEP functionality in OpenSIPS

PROTO

PAYLOA
DCHUNKS HE

P3
 /

EE
P

T Y P E

HE
P2

HE
P1

loadmodule "proto_hep.so"
loadmodule "siptrace.so"

#Socket to send
listen=hep_udp:10.0.0.1:9060

a hep uri is in the following form: "hep:[ip]:[port]"
#Default version 3, you can set version 2, 1. And set transport, default udp.
modparam("siptrace", "trace_id", "[hep]uri=hep:192.168.100.6:6161;transport=udp;version=3")

route {

$var(trace_id) = "hep";
#you can define user to trace.
$var(user) = "osip_user@opensips.org";

 ### CHANGEME optional - 'd' is for tracing dialogs(need tm + dialog)
 ### 't' for tracing transaction(need tm)
 ### 'm' for tracing only this message

 /* Example 1: Trace a dialog */

if (has_totag()) {
match_dialog();

} else {
if (is_method("INVITE") {

sip_trace("$var(trace_id)", "d", "$var(user)");
}

}

/* Example 2: Trace initial INVITE and BYE */

if (has_totag()) {
if (is_method("BYE")) {

sip_trace("$var(trace_id)", "m", "$var(user)")
}

} else {
if (is_method("INVITE")) {

sip_trace("$var(trace_id)", "m", "$var(user)")
}

}

/* Example 3: Trace initial INVITE transaction */
if (!has_totag()) {

if (is_method("INVITE")) {
sip_trace("$var(trace_id)", "t", "$var(user)");

}
}

/* Example 4: stateless transaction aware mode!*/
/* tm module must not be loaded */
if (is_method("REGISTER")) {

sip_trace("$var(trace_id)", "t", "$var(user)");
if (!www_authorize("", "subscriber")) {
/* siptrace will also catch the 401 generated by www_challenge() */

www_challenge("", "1");
}

}
}

SIPTRACE

SIPTRACE Capture AgentSIPTRACE Capture Agent

FreeSWITCH HEP/EEP Configuration
Example Usage of the Integrated Capture Agent for Monitoring

MEET ME AT
CLUECON 2016

FreeSWITCH ships with a built-in HEP agent used to mirror/transfer packets unmodified and carries timestamp and several
session key values in its headers, designed for capturing simple and complex scenarios with minimal configuration efforts.

To enable HEP capturing, open sofia.conf.xml and set capture-server param:

 <param name="capture-server" value="udp:10.0.0.1:9060" />

NEW! Freeswitch v1.6.8 (master git) now supports HEPv2 + HEPv3/EEP encapsulation & parameters:

 <param name="capture-server" value="udp:10.0.0.1:9060;hep=3;capture_id=100" />

To enable the HEP capture agent globally, open internal.xml and change sip-capture param to "yes"

 <param name="sip-capture" value="yes" />

To enable/disable the HEP capture agent on demand, you can use CLI commands:

 freeswitch@fsnode04> sofia global capture on
 +OK Global capture on
 freeswitch@fsnode04> sofia global capture off
 +OK Global capture off

To enable/disable the HEP capture agent on a specific profile:

 freeswitch@fsnode04> sofia profile internal capture on

FreeSWITCH HEP/EEP Configuration
Example Usage of the Integrated Capture Agent for Monitoring

Let’s add a Docker container running FreeSWITCH 1.6.8 with native HEP3 support to our stack:

FreeSWITCH HEP/EEP Configuration + DOCKER
Example Usage of the Integrated Capture Agent for Monitoring

Create stateful volume
docker create --name fsdata --volume /usr/local/freeswitch/conf qxip/freeswitch-container:1.6.8 /bin/true

Start FS using stateful volume for data
docker run -tid --name freeswitch -p 5060:5060/udp -p 5080:5080/udp --expose 16384-32768 --volumes-from fsdata qxip/freeswitch-container:1.6.8

Bash in
docker exec -i -t freeswitch /bin/bash

FreeSWITCH is up and running - Great!

Let’s start by configuring our brand new capture-server in /usr/local/freeswitch/conf/autoload_configs/sofia.conf.xml:

 <!-- the new format for HEPv2/v3 and capture ID protocol:host:port;hep=2;capture_id=200; -->

 <param name="capture-server" value="udp:10.0.0.1:9060;hep=3;capture_id=100"/>

The sip-capture functionality is controlled at profile level - let’s add it to: /usr/local/freeswitch/conf/autoload_configs/internal.xml:

 <param name="sip-capture" value="yes"/>

Now we can enable packet mirroring for all (or some) of our traffic:

FreeSWITCH HEP/EEP Configuration + DOCKER
Example Usage of the Integrated Capture Agent for Monitoring

freeswitch@fsnode04> reloadxml
freeswitch@fsnode04> reload mod_sofia

freeswitch@fsnode04> sofia global capture on
+OK Global capture on

freeswitch@fsnode04> sofia global capture off
+OK Global capture off

In order to correlate internal/external B2BUA session with different UUIDs we can use a Custom Header in our master dialplan:

…
<action application="set"><![CDATA[sip_h_X-CID=<sip:${sip_call_id}]]></action>

…

INVITE sip:18007654321@1.2.3.4 SIP/2.0
From: "Some Guy" <sip:2132132132@127.0.0.1>;tag=XQKQ322vQF5gK
To: <sip:18007654321@1.2.3.4>
Call-ID: ABC-1234

INVITE sip:EXT4321@5.6.7.8 SIP/2.0
From: "Anonymous" <sip:anonymous@invalid>;tag=KSJDOKAH678A
To: <sip:EXT4321@5.6.7.8>
Call-ID: DEF-NEW-45678_id
X-CID: ABC-1234

If you configured everything correctly, you should be ready to search and display your sessions in Homer:

FreeSWITCH HEP/EEP Configuration + DOCKER
Example Usage of the Integrated Capture Agent for Monitoring

You want more, don’t you? Enter HEPIPE-ESL!

Hepipe-ESL is a nodejs application for harvesting FreeSWITCH Event Socket and extracting internal logs, statistics, media reports
and much more providing the basics to transform events into arbitrary and correlated HEP/EEP Custom Reports sent to HOMER 5

FreeSWITCH HEP/EEP ESL Integration
Example Usage of the External ESL Capture Agent for Monitoring

git clone http://github.com/sipcapture/hepipe.js
cd hepipe.js/esl
npm install

Running Hepipe-ESL with default settings is as simple as passing two arguments pointing at your Capture server:

nodejs hepipe-esl.js -s {homer_ip} -p {homer_port}

-s HEP SERVER IP 127.0.0.1

-p HEP SERVER Port 9060

-es FS ESL IP 127.0.0.1

-ep FS ESL Port 8021

-ew FS ESL Password ClueCon

http://github.com/sipcapture/hepipe.js

ESL logs are automatically correlated to SIP Sessions by HEPIPE and are made available via the HOMER "Logs" tab

A QUICK EXAMPLE:

FreeSWITCH HEP/EEP ESL Integration
Example Usage of the External ESL Capture Agent for Monitoring

Asterisk + HEP/EEP Configuration + DOCKER
Example Usage of the Integrated Capture Agent for Monitoring

SUPPORTS BOTH
SIP + RTCP

Asterisk 12+ ships with HEP encapsulation support (res_hep) and is able to natively mirror its packets to a SIPCAPTURE Collector
such as HOMER. Enabling the HEP/EEP feature is as simple as configuring /etc/asterisk/hep.conf

Let’s add a Docker container running Asterisk 13.1 built with PJSIP and native HEP+RTCP support to our stack:

The Docker container comes pre-loaded with all HEP modules (res_hep, res_hep_pjsip, res_hep_rtcp) and can immediately be used:

Create stateful volume
docker create --name asteriskdata --volume /etc/asterisk/ qxip/docker-asterisk-hep /bin/true

Start Container
docker run -tid --name asterisk -p 5080:5060 --expose 5060/udp --expose 10000-20000/udp --volumes-from asteriskdata qxip/docker-asterisk-hep

Attach
docker attach asterisk

Bash in
Docker exec -ti asterisk /bin/bash

Asterisk + HEP/EEP Configuration + DOCKER
Example Usage of the Integrated Capture Agent for Monitoring

asterisk*CLI> module show like res_hep
Module Description Use Count Status Support Level
res_hep.so HEPv3 API 0 Running extended
res_hep_pjsip.so PJSIP HEPv3 Logger 0 Running extended
res_hep_rtcp.so RTCP HEPv3 Logger 0 Running unknown

Asterisk is up and running - Great!

Enabling the HEP/EEP feature globally is as simple as configuring /etc/asterisk/hep.conf

Asterisk 12+ also ships with res_hep_rtcp. The module subscribes to Stasis and receives RTCP information back from the
message bus, which it encodes into HEP/EEP packets and sends to the res_hep module for transmission. Using this
module, Homer users can receive live call quality monitoring for all channels in their PJSIP Asterisk 12+ systems.

To enable the functionality, simply load the res_hep_rtcp module alongside the res_hep module (not required for Docker)
Functionality is only available for chan_pjsip at this time

; res_hep Module configuration for Asterisk
; All settings are currently set in the general section.

[general]
enabled = yes
; Enable/disable forwarding of packets to a
; HEP server. Default is "yes".

capture_address = 10.0.0.1:9060
; The address of the HEP capture server.

capture_password = foo
; If specified, the authorization password for the HEP server. If not specified, no authorization password will be sent.

capture_id = 1234
; A unique integer identifier for this server. This ID will be embedded sent with each packet from this server.

Asterisk + HEP/EEP Configuration
Example Usage of the Integrated Capture Agent for Monitoring

https://github.com/sipcapture/homer/wiki/Examples%3A-Asterisk
https://github.com/sipcapture/homer/wiki/Examples%3A-Asterisk

Asterisk + HEP/EEP Configuration
Example Usage of the Integrated Capture Agent for Monitoring

If you configured everything correctly, you should be ready to search and display your sessions in Homer:

Kamailio WSS Monitoring with HEPIPE.js
Example Usage of the External HEP Harvester for WebSocket Log Monitoring

ITS BOB - GET ME
ALICE RIGHT NOW!

Kamailio is great at handling webSocket connections, but are you just are great at troubleshooting them?
In this simple example, we will configure an external log harvester feeding Kamailio logs carrying details about WSS socket
connections - including the mandatory SIP Correlation. First of all, let’s create a custom WSS log streaming new session details:

Next - let’s instruct our local rsyslog.conf to redirect our new rows (homerwss) to a custom file we can use:

Kamailio WSS Monitoring with HEPIPE.js
Example Usage of the External HEP Harvester for Log Monitoring

request_route {

 # per request initial checks
 route(REQINIT);

 if (proto == WS || proto == WSS) {
 setflag(SRC_WS);

xlog("L_INFO", "homerwss CID: [$ci], SIP: Method: $rm, CSEQ: $cs, RU: $rU, WSS Request: RM: $var(wss_rm), RU: $var(wss_ru),
UAC: $var(wss_uac), Connection: $var(wss_connection), Upgrade: $var(wss_upgrade), Origin: $var(wss_origin), Host: $var
(wss_host), Sec_Proto: $var(wss_sec_proto), Sec-Key: $var(wss_sec_key), WS_VERSION: $var(wss_sec_version)");

 }

 sip_trace();
 setflag(22);

…
}

WSS LOG RULE
:msg, contains, "homerwss" /var/log/homerwss.log
& ~

HEPIPE.js is designed to provide a quick and lightweight set of HEP functionality to correlate and ship arbitrary user data and the
perfect tool for feeding off our brand new custom WSS logs. In order to work the node application only needs two key parameters:

● Path to Log File example: /var/log/homerwss.log
● Regex Filter to extract a Correlation ID example: CID: \[(.*)\]

Kamailio WSS Monitoring with HEPIPE.js
Example Usage of the External HEP Harvester for Log Monitoring

// HEPIPE-JS SETTINGS (please configure)
// --
var config = {
 // Address and Port of your HEP Server
 HEP_SERVER: '10.0.0.1',
 HEP_PORT: 9060,
 // the HEP ID and Authentication for this Agent
 HEP_ID: '2099',
 HEP_AUTH: 'HEProcks',
 // the Logs to monitor
 LOGS: [
 {
 tag : 'rtc',
 host : 'WSS',

 pattern: 'CID: \\[(.*)\\]', // escape backslashes!
 path : '/var/log/homerwss.log'
 }
]
};

module.exports = config;

Kamailio WSS Monitoring
http://github.com/sipcapture/wiki

webRTC ClientHEP.JS

RTPENGINE

SRTP (DTLS)

HEPIPE.JS HEP ENCAPSULATION

Browser

KAMAILIO WS/WSS SOCKET

if (proto == WS || proto == WSS) { setflag(SRC_WS);

 xlog("L_INFO", "homerwss CID: [$ci], SIP: Method: $rm, CSEQ: $cs, RU: $rU, WSS Request: RM: $var(wss_rm), RU: $var(wss_ru),
 UAC: $var(wss_uac), Connection: $var(wss_connection), Upgrade: $var(wss_upgrade), Origin: $var(wss_origin),
 Host: $var(wss_host), Sec_Proto: $var(wss_sec_proto), Sec-Key: $var(wss_sec_key), WS_VERSION: $var(wss_sec_version)");

 }

sip_trace();
setflag(22);

WSS SIP

https://github.com/sipcapture/homer/wiki/Examples:-Kamailio-webrtc
https://github.com/sipcapture/homer/wiki/Examples:-Kamailio-webrtc

HOMER 5: WSS Call Flow
WSS to SIP Call Troubleshooting

HOMER 5: RTC Native Call Flow
Native webRTC Gateway to SIP Call Troubleshooting via HEP/EEP

A growing number of RTC Gateways are being integrated: RTC:Engine/Sipwise, Janus/Meeteche, SPiDR/Genband and more!

UA Remote Log Monitoring
http://github.com/sipcapture/hepipe-js

webRTC Client

 WS/WSS SOCKET

WSS SIP

HEP.JS

RTPENGINE

SRTP (DTLS)

HEPIPE.JS HEP ENCAPSULATION

Browser

JsSIP:Transport WebSocket disconnected (code: 1006) +2m
jssip.js:22725 JsSIP:ERROR:Transport WebSocket abrupt disconnection +0ms
jssip.js:22550 JsSIP:Transport trying to reconnect to WebSocket wss://1.2.3.4:4443 jssip.
js:22550 JsSIP:Transport connecting to WebSocket wss://1.2.3.4:4443 +4s
jssip.js:22550 JsSIP:Transport WebSocket wss://1.2.3.4:4443 connected +132 ms

D

http://github.com/sipcapture/hepipe-js
http://github.com/sipcapture/hepipe-js

Captagent

CAPTAGENT 6.1 HEP/EEP Configuration
Example Usage of the Universal Capture Agent for Monitoring

WHEN EVERYTHING
ELSE FAILS, THERE’S

CAPTAGENT

Captagent is a powerful, flexible, completely modular capture agent framework ready for virtually any kind of protocol and
encapsulation method - past, present and future. In this example we will look at a basic standard scenario for passive SIP monitoring.

If you are using Docker and have access to the --net=host option, our CaptAgent 6 container is ready to use:

If you are installing on an existing host or system, clone a fresh copy from the main repository:

cd /usr/src
git clone https://github.com/sipcapture/captagent.git captagent
cd captagent
./build.sh
./configure
make && make install

CAPTAGENT 6.1 HEP/EEP Configuration
Example Usage of the Universal Capture Agent for Monitoring

Create stateful volume
docker create --name captagentdata --volume /etc/asterisk/ qxip/docker-asterisk-hep /bin/true

Start Container
docker run -tid --name captagent --net=host --volumes-from captagentdata qxip/captagent-docker

Bash in
docker exec -ti captagent /bin/bash

Captagent

Captagent must be configured before usage. The main configuration file is captagent.xml

The first step is to define a CAPTURE SOCKET - We will use the default PCAP socket and default settings:

● Capture device: any
● Capture Portrange: 5060-5091
● Capture Plan: sip_capture_plan.cfg

Let’s confirm our configuration in socket_pcap.xml

NEXT: Let’s configure a Capture Plan to handle the Procotol

CAPTAGENT 6.1 HEP/EEP Capture Socket
Example Usage of the Universal Capture Agent for Monitoring

<profile name="socketspcap_sip" description="HEP Socket" enable="true" serial="2014010402">
 <settings>
 <param name="dev" value="any"/>
 <param name="promisc" value="true"/>
 <param name="reasm" value="false"/> // comments here to explain the option?
 <param name="tcpdefrag" value="false"/> // comments here to explain the option?
 <param name="capture-plan" value="sip_capture_plan.cfg"/>
 <param name="filter">
 <value>portrange 5060-5091</value>
 </param>
 </settings>
</profile>

Captagent

Capture Plans are configurable pipelines handling packets and protocols captured and forwarded by Capture Sockets where
additional logic can be defined before sending off the HEP/EEP packet to one or multiple collectors.

In this example we will use the default SIP plan available in: captureplans/sip_capture_plan.xml

NEXT: Let’s configure a Transport Socket to send the HEP/EEP Packet

CAPTAGENT 6.1 HEP/EEP Capture Plans
Example Usage of the Universal Capture Agent for Monitoring

capture[pcap] {
Perform checks against source/destination IP/port, message size
if(msg_check("size", "100")) {
 if(source_ip(“10.0.0.99”)) { drop; }
 # Parse the Message
 if(parse_sip()) {

Send using one or multiple profiles defined in transport_hep.xml
if(!send_hep("hepsocket")) {
 clog("ERROR", "Error sending HEP!!!!");
}

 }
}
drop;

}

Captagent

Transport Sockets are used to deliver the encapsulated packet to a collector.

In this example we will use the default HEP transport module: transport_hep.xml and our HOMER capture server details:

It’s HOMER Time! Go ahead and capture some packets!

CAPTAGENT 6.1 HEP/EEP Transport Socket
Example Usage of the Universal Capture Agent for Monitoring

 <profile name="hepsocket" description="Transport HEP" enable="true" serial="201605172204">
 <settings>

<param name="version" value="3"/>
<param name="capture-host" value="10.0.0.1"/>
<param name="capture-port" value="9060"/>
<param name="capture-proto" value="udp"/>
<param name="capture-id" value="2001"/>
<param name="capture-password" value="myhep"/>
<param name="payload-compression" value="false"/>

 </settings>
 </profile>

captagent -v
Version: 6.1.0

captagent -f /usr/local/captagent/etc/captagent/captangent.xml -n

Captagent

Advanced RTCP Media Statistics, You Ask? Pronto!

Captagent can natively capture and correlate SIP and RTCP sessions - Just enable the required modules in captagent.xml

Next, enable the RTCP Socket pipeline in socket_pcap.xml pointing to your RTCP captureplans/rtcp_capture_plan.xml

CAPTAGENT 6.1 HEP/EEP RTCP + SIP Mirroring
Example Usage of the Universal Capture Agent for Monitoring

 <profile name="socketspcap_rtcp" description="RTCP Socket" enable="true" serial="2014010402">
 <settings>

<param name="dev" value="eth0"/>
<param name="promisc" value="true"/>
<param name="reasm" value="false"/> // Enable UDP reassembling
<!-- size in MB -->
<param name="ring-buffer" value="20"/> // Kernel network ring buffer size = RX_RING
<!-- for rtp && rtcp < 250 -->
<param name="snap-len" value="256"/> // for RTP/RTCP packets we should capture maximum 256 bytes
<param name="capture-filter" value="rtcp"/> // predefined BPF filter - capture only RTCP packets
<param name="capture-plan" value="rtcp_capture_plan.cfg"/>
<param name="filter">
 <value>portrange 20000-50000</value> // port or portrange filter to use for packet capturing
</param>

 </settings>
</profile>

<load module="transport_hep" register="local"/>

 <load module="database_hash" register="local"/>

<load module="protocol_sip" register="local"/>

<load module="protocol_rtcp" register="local"/>

<load module="socket_pcap" register="local"/>

<load module="socket_raw" register="local"/>

Captagent

If you configured everything correctly, your HOMER 5 QoS statistics will start being populated:

CAPTAGENT 6.1 HEP/EEP RTCP + SIP Mirroring
Example Usage of the Universal Capture Agent for Monitoring Captagent

CAPTAGENT+RTPAGENT PRO Modules
Commercial Capture Extensions with Advanced Functionality

RTPAgent is a “privacy-friendly” Analytics and Reporting probe for HOMER 5
performing wire-speed RTP session and network packet analysis in-transit and in
real-time without storing any data to disk (unless desired) and delivers granular
periodic and final reports with a full stack of dedicated metrics at each interval:

● Source/Destination IP/PORT/MAC

● Bytes/Packets Total, Expected
● Packet Loss
● Jitter (min/man/mean)

● RTT Delta/Skew (min/man/mean)

● Codec ID, Clock Rate
● MOS Estimation
● R-Factor Estimation

RTP Reporting frequency can be defined by the integrator or self-adjusted by the
probe to send higher number of periodic QoS reports for sessions where suspect
quality issues are identified and to automatically reduce the number of reports for
those delivering high scores in order to minimize the bandwidth overhead.

RTPAgent is designed to deal with multi-party and multi-codec calls including
video sessions and can automatically detect/report a vast number of conditions.

Additional Modules:

★ On-Demand, Filtered Stream Recording to Disk (SIP/RTP/RTCP)

★ Lawful Interception (X1/2/3 ETSI 232)

{
"CORRELATION_ID":"56a211936328-fgbtmubkimot",
"RTP_SIP_CALL_ID":"56a211936328-fgbtmubkimot",
"DELTA":19.980,
"JITTER":0.023,
"REPORT_TS":1453461919,
"TL_BYTE":0,
"SKEW":-0.180,
"TOTAL_PK":510,
"EXPECTED_PK":510,
"PACKET_LOSS":0,
"SEQ":0,
"MAX_JITTER":1.892, "MEAN_JITTER":0.126,
"MAX_DELTA":35.547, "MAX_SKEW":-15.615,
"MIN_MOS":4.385, "MEAN_MOS":4.394, "MOS":4.394,
"RFACTOR":92.449, "MIN_RFACTOR":92.013, "MEAN_RFACTOR":92.444,
"SRC_IP":"192.168.178.34", "SRC_PORT":58320, "DST_IP":"192.168.60.70","DST_PORT":
32728,
"SRC_MAC":"00-04-13-29-64-22","DST_MAC":"34-31-C4-38-24-0D",
"CODEC_PT":9,"CLOCK":8000, "CODEC_NAME":"g722", "DIR":1,
"REPORT_NAME": "192.168.178.34:58320", "PARTY":0 ,"TYPE":"PERIODIC"
}

Captagent

http://192.168.178.34:58320

sipgrep

SIPGREP 2.x & SNGREP 1.x

Disposable “on-demand” console HEP/EEP Agents

CAN’T INSTALL MUCH?
TRY SIPGREP

SIPGREP 2.x & SNGREP 1.x

Disposable “on-demand” console HEP/EEP Agents

Working and Troubleshooting on Remote system with nothing but a
console available? No problem - HEP/EEP has you covered!

sipgrep is SIP console capture and troubleshooting tool able to
act as a quick on-demand HEP/EEP capture agent sending packets
to a collector to enrich and empower console troubleshooting:

sipgrep -f 23333 -H udp:10.0.0.1:9060

sngrep 1.x from Irontec/Kaian introduces a HEP/EEP command
line option (-H) and dedicated settings (eep.send) to send capture
data in HEP/EEP to Homer and to run headless as a capture agent:

sngrep port 5060 -H udp:10.0.0.1:9060 --no-interface -q

sipgrep -f 23333 -H
udp:10.0.0.1:9061

sipgrep

HEPIPE.js
Strings Galore!

I GOT SO MUCH LOGS
TO GIVE...

HEPIPE.js
Strings Galore!
Troubleshooting is not just about network packets - system logs will often hold valuable pointers to internal issues not expressed
at the protocol level. There are many tools available to forward syslog/rsyslog to notorious collectors but for those looking to build
their own voice data collection, we have developed a HEP3 playground utility called HEPipe

HEPipe (pronounced HEP-pipe) is a NodeJS application designed for monitoring, harvesting and extracting arbitrary data (from
application logs, cdrs, debug lines, syslog, etc) to a remote HEP/EEP capture server such as HOMER or PCAPTURE

This utility can be used to prototype custom HEP/EEP implementations as well as to feed production data into a HEP Collector for
real life usage, for instance by using the session Call-ID as correlation parameter for voice system logs

Example Log: NGCP/Kamailio

Nov 19 22:05:36 ams2 /usr/sbin/kamailio[1067]: INFO: Sending reply, fs='udp:127.0.0.1:5060' - ID=11876453@127.0.1.1

Example HEPIPE.js Config:

 Regex Filter: ID=([^&]\\S*)

 Correlation: 11876453@127.0.1.1

rcinfo = {
 type: 'HEP',
 version: 3,
 payload_type: '100',
 captureId: '2001',
 capturePass: 'myHep',
 ...
 correlation_id: '11876453@127.0.1.1',
 payload: {
 msg: 'Nov 19 22:05:36 ams2 /usr/sbin/kamailio[1067]: INFO: Sending reply, fs='udp:127.0.0.1:5060' ID=11876453@127.0.1.1'
 }
}

https://github.com/sipcapture/homer
http://pcapture.com/

Setup using Node.JS to mirror and correlate your custom logs:

Step 1: Install HEPIPE from our Github repository on the logging server

Step 2: Edit the application parameters for HEP and LOGS monitoring in config.js
Each LOGS entry defines a log path and a (regex) rule to match/extract the proper correlation ID from rows

Example Row: Nov 19 22:05:36 ams2 INFO: Sending reply, fs='udp:127.0.0.1:5060' - ID=11876453@127.0.1.1

Example Regex: ID=([^&]\\S*)

Correlation ID: 11876453@127.0.1.1

HEPIPE.js
Installation & Setup

git clone http://github.com/sipcapture/hepipe.js
cd hepipe.js
npm install

var config = {
 HEP_SERVER: '10.0.0.1',
 HEP_PORT: 9060,
 HEP_ID: '2099',
 HEP_AUTH: 'HEProcks',
 LOGS: [
 {
 tag : 'NGCP-Logs',
 host : 'NGCP01',

 pattern: 'ID=([^&]\\S*)', // escape backslashes!
 path : '/var/log/syslog.log'
 }
]
};
module.exports = config;

http://github.com/sipcapture/hepipe.js

Step 3: There’s not even a step 3 - you are done! It’s now time to start sending HEPIPE logs to HOMER

HEPipe.js logs are automatically correlated to SIP Sessions in HOMER and are made available via the "Logs" tab

PRO-TIP: Logs can be filtered directly within the tab using word match or regex rules!

HEPIPE.js

TEST CALLS?
YOU GOT IT!.

BARESIP 0.4.18 LibRE based command-line SIP UA
Example Usage of BareSIP for Call Testing and Quality Probing

Baresip

How do we test it all? Our favourite FOSS User-Agent is BareSIP which features X-RTP-Stat and RTCP-XR functionality out of the box!

Let’s fire up our BareSIP Docker container:

BARESIP 0.4.18 LibRE based command-line SIP UA
Example Usage of BareSIP for Call Testing and Quality Probing

baresip configuration

...

rtp_stats yes

rtcpxr_stats yes

rtcpxr_collector sip:rtcpxr@sip.host.ext:5060

...

Captagent

First and foremost, let’s enable the QoS reporting options in .baresip/config

Create stateful volume
docker create --name baresipdata --volume /root/.baresip qxip/baresip-docker /bin/true

Start FS using stateful volume for data
docker run -tid --name baresip -p 5060:5060/udp -p 8080:8080/tcp --expose 10000-20000 --volumes-from baresipdata qxip/baresip-docker

Bash in
docker exec -i -t baresip /bin/bash

R

> sip:username:password@sip.host.ext

Before running let’s add a SIP account in .baresip/accounts or just directly in Baresip CLI using the “R” command:

Let’s now fire a test call and check if we receive the reports - We can use the standard CLI or the BareSIP HTTP API on port 8080

BARESIP 0.4.18 LibRE based command-line SIP UA
Example Usage of BareSIP for Call Testing and Quality Probing

baresip is ready.
1001@172: {0/UDP/v4} 200 OK () [1 binding]
All 1 useragent registered successfully! (170 ms)
call: connecting to 'sip:500@172.17.0.3:5080'..
1001@172.17.0.3: Call established: sip:500@172.17.0.3:5080
sip:1001@172.17.0.3:5080: Call with sip:500@172.17.0.3:5080 terminated (duration: 8 secs)
audio Transmit: Receive:
packets: 402 298
avg. bitrate: 64.0 48.0 (kbit/s)
errors: 0 0
pkt.report: 221 192
lost: 0 0
jitter: 7.6 0.1 (ms)

Captagent

Did it work? Open the session in HOMER 5 and check if the “QoS Reports” tabs

SHARING IS
CUSTOMER CARING

LET ME PROVE HOW
THIS IS YOUR FAULT

Sharing to Internal Users & Collaborators

For trusted entities, HOMER provides built-in “Share Link” functionality via a secluded part of its web application

Sharing to External Parties and Partners

For untrusted entities, HOMER provides built-in integration with external applications such as CloudShark via “Share Cloud”

CLOUD SHARE configuration

Configure HOMER to Export to CloudShark

Edit your HOMER API Preferences (api/preferences.php):

● CLOUD_STORAGE : Enable Cloud functionality (1)
● CLOUD_STORAGE_API : Configure using your CloudShark API Key (upload rights required)

● CLOUD_STORAGE_URI : Configure to point at your Cloudshark URI (https://www.cloudshark.org)

API
 REST INTERFACE

REAL DEVS ONLY
USE THE API

HOMER 5
API Integration

Homer 5 is 100% based on API functions to provide its features - the same functions used by the UI are available to
users and devs to integrate HOMER results and functionality in 3rd party platforms, scripts and monitoring systems.

The HOMER API functions are documented within the project itself and being updated as development progresses.

The APIDOC folder is available here: https://github.com/sipcapture/homer-api/tree/master/apidoc

TIP: The best approach towards learning the API is to "spy" on the browser console and network transactions while
using the User-Interface features and replicating them by using CURL or other utilities to develop new patterns

Example Integration: SNMP

An example API integration to provide SNMP bridge to Homer internal metrics is available on our repository:

https://github.com/sipcapture/homer-snmp

https://github.com/sipcapture/homer-api/tree/master/apidoc
https://github.com/sipcapture/homer-snmp
https://github.com/sipcapture/homer-snmp

HOMER 5
Wiki Documentation and Examples

Homer 5 is documented using our Github Wiki where all guides, details, example and how-tos are made available.
Dive in to get started (or refreshed) with all the available topics updated on a daily basis including:

★ How to Install and Update Homer
★ How to get started with the User-Interface
★ How to customize Panels and Widgets
★ How to manage Users and Aliases
★ How to configure HEP Capture Agents
★ How to configure HEP Custom Agents
★ How to correlate Sessions and Reports
★ How to make your own Statistics and Widgets

. and much more !

“Just HEP Yourself … “

https://github.com/sipcapture/homer/wiki/

https://github.com/sipcapture/homer/wiki/
https://github.com/sipcapture/homer/wiki/

Q & A
Ask us almost Anything

(… 3, 2, 1, MySQL . . .)
LOVE HOMER?

DON’t FORGET TO
GET ME A BEER

OR A DONATION

Time’s UP! Want to go further? "HEP" Yourself!

SIPCAPTURE @GITHUB http://sipcapture.org + http://sipcapture.io

HOMER @GITHUB http://github.com/sipcapture/homer

CAPTAGENT @GITHUB http://github.com/sipcapture/captagent

HEPIPE.JS @GITHUB http://github.com/sipcapture/hepipe.js

MAILING-LIST @USERS https://groups.google.com/forum/#!forum/homer-discuss

http://sipcapture.org
http://sipcapture.io
http://sipcapture.org
http://github.com/sipcapture/homer
http://github.com/sipcapture/homer
http://github.com/sipcapture/captagent
http://github.com/sipcapture/captagent
http://github.com/sipcapture/hepipe.js
http://github.com/sipcapture/hepipe.js
https://groups.google.com/forum/#!forum/homer-discuss
https://groups.google.com/forum/#!forum/homer-discuss

