
Asterisk - What’s Happening in 
Master?

Matthew Fredrickson 

@creslin287 



Personal Background

Who are you and what have you done with Matt Jordan?!! 

• Worked at Digium since 2001 in various developmental 
capacities 

• Worked on Asterisk at different times 

• Maintained libpri and DAHDI for many years 

• Wrote an SS7 stack for Asterisk (libss7) 

• Worked on WebRTC related initiatives for the last few 
years 

• Manage the Asterisk project



Asterisk-land - What’s happening?

• Recently released version 13.15.0 of the 13 branch of 
Asterisk and 14.4.0 release of the 14 branch. 

• Completed certification testing of the 13.13-certified 
release of Asterisk. 

• Dennis Guse and Frank Haase’s binaural audio patches 
for Asterisk and app_confbridge have recently been 
merged. 

• Jitter buffer improvements to better support features 
such as FEC in codec_opus 



What’s happening in Asterisk’s master branch

Quiz: 3 are lies and 3 are true - which channel drivers in 
Asterisk utilize SDP as a means of conveying media 
descriptions? 

• chan_sip 

• chan_jingle 

• chan_pjsip 

• chan_mgcp 

• chan_webrtc 

• chan_sdp



What’s happening in Asterisk’s master branch

Abstracted SDP layer: 

• Many telecom protocol implement some form of SDP to 
negotiate media stream attributes: SIP, MGCP, Native 
browser RTCPeerConnection (JSEP/WebRTC) 

• Rather than reimplement SDP parsing and abstraction in 
every channel driver within Asterisk, instead a non-
channel driver specific abstract SDP layer should be 
used.



What’s happening in Asterisk’s master branch

Abstracted SDP layer: 

• Top level user interface API has an offer/answer state 
and management built in 

• Handles cases like offer/answer negotiation failure and 
sdp rollback 

• Handles early media scenarios (think 183 Session 
Progress), where initial sdp is not final sdp (like in 200 
OK) 

• Has pluggable bottom end translator API for text 
parsing/generation (serialization) side of SDP from 
internal SDP state.  Only implementation is currently 
res_sdp_translator_pjmedia



What’s happening in Asterisk’s master branch

ast_channel and core gaining multi-stream support: 

• Increased interest in a new class of RTC clients.  Widely 
deployed, with more power and vendor neutral capability 
then ever before - Web browser. 

• Multistream support (particularly video) is becoming 
more and more important 

• Currently, asterisk’s ast_channel interface supports only 
a single stream of each type (audio, video, text) 



What’s happening in Asterisk’s master branch

ast_channel and core gaining multi-stream support: 

• Extension to ast_channel interface done in a backwards 
compatible way 

• All existing channel APIs should remain compatible, 
defaulting to a single audio/video stream as per history. 

• Work done though the new stream topology APIs and new 
ast_stream_topology structure. 

• Allows stream renegotiation to occur dynamically in 
Asterisk’s core, and can be done on a per application basis. 



What’s happening in Asterisk’s master branch

ast_stream and ast_stream_topology: 

• ast_stream_topology can contain one more more 
ast_stream object. 

• ast_stream represents a single audio or video stream 
with an Asterisk channel or ast_channel 

• An ast_channel can be requested with a certain topology 
at creation time or a new topology can be requested on 
the fly (allowing codec renegotiation to occur 
dynamically) 

• ast_channel_request_stream_topology_change() to 
request it at runtime (and subsequent SDP 
renegotiation)



What’s happening in Asterisk’s master branch

ast_stream and ast_stream_topology: 

ast_stream_topology - with 4 ast_streams

ast_stream 1 - audio send/receive

ast_stream 2 - video send only

ast_stream 3 - video receive only

ast_stream 3 - video inactive



What’s happening in Asterisk’s master branch

RTCP-MUX support (also in 13 & 14): 

• Required significant changes to res_rtp_asterisk.c 

• RTCP-MUX is a webrtc technology used to multiplex 
RTCP and RTP on the same UDP port. (sounds like IAX :-) 

• No additional encapsulation layer is required to 
discriminate between RTP and RTCP packets 

• Certain RTP payload codes are unusable in order for it to 
work properly 

• RTCP-MUX support is required in Chrome 57 *** 

• Completed and in all current releases of Asterisk (13.15.0 
and 14.0.4)



What’s happening in Asterisk’s master branch

RTCP-MUX: What is it? 

Traditional RTP/RTCP

UDP Port N
RTP - Media packets of codec, defined by 
payload code X

UDP Port N+1
RTCP - Packet loss, RTT, and other data 
about RTP stream.



What’s happening in Asterisk’s master branch

RTCP-MUX

UDP Port N

RTP - Media packets of codec, defined by 
payload code X

RTCP - Packet loss, RTT, and other data 
about RTP stream.



What’s happening in Asterisk’s master branch

Integration of new SDP API and native multistream 
support in chan_pjsip: 

• To support the new multistream APIs in Asterisk 
requires channel driver changes. 

• Existing channel drivers work, even with new APIs (so 
we didn’t break the world, as we’d feared might happen) 
BUT only with historical support for single audio and 
video stream. 

• chan_pjsip will be the first channel driver to support the 
new multistream APIs as well as the abstracted SDP 
layer.  This work is in progress as we speak.



What’s happening in Asterisk’s master branch

Simple multistream echo application: 

• A lot of work has been done behind the scenes to extend the 
Asterisk core to work well in a multistream environment. 

• Many parts have been completed, but some parts are yet in 
progress (chan_pjsip support, for example) 

• Need a simple test to do integration testing with a modern 
browser based endpoint 

• Multistream echo will open a session to receive one video 
stream from a browser and echo it back out over N more 
streams. 

• This may seem like a simple application, but given that it will 
be the first end to end integration test of 5 months of code, 
it’s a pretty important.



What’s happening in Asterisk’s master branch

App - 
Multistream 

Echo
Browser

Stream 1 - Video 1 TX

Stream 2 - Video 1 RX

Stream 3 - Video 1 RX

Stream 4 - Video 1 RX

Stream 5 - Video 1 RX



What’s happening in Asterisk’s master branch

Extend app_confbridge to provide an SFU type 
experience: 

• For those not familiar, an SFU is a way of forwarding 
individual video streams from endpoint to endpoint (star 
network topology) instead of compositing them all 
together into a single stream like an MCU. 

• Goal is to have simple, implicit SFU experience in 
app_confbridge. 



What’s happening in Asterisk’s master branch

N participants, each sending one video stream and 
receiving N-1 video streams from other participants. 

Asterisk

Browser A Browser B Browser C



What’s happening in Asterisk’s master branch

What’s next? 

• More steps along the path to fully support the WebRTC 
media stack 

• Bundle 

• Further improvements in app_confbridge SFU support 

• ARI support for multichannel video setup 

• ARI hooks for app_confbridge SFU support 



Where is Asterisk going? (next 1-2 years)

Potential directions: 

• Leave the past: Less SIP.  SIP is too new, will never take 
off, and will never be adopted at any level of 
significance. 

• Push to the future: More ISDN - ISDN is the future of 
radio. 

• Push to the future: More SS7 

• Just kidding, of course :-) 



Where is Asterisk going? (next 1-2 years)

Directions: 

• Better handling of flexible, multimedia applications 

• Improved IoT integration - RTMP channel driver 

• Continuing to enhance multistream audio and video 
support within Asterisk’s core 

• Continue to flesh out Asterisk’s REST interface 
(particularly with regards to SFU additions) 



Reminder

- 11 went into security fix only mode in October (get 
moving forward to 13/14) - it has less than 6 months left to 
live. 



Thanks!

Matthew Fredrickson 

Follow me @creslin287 on twitter 

creslin@digium.com 




