
Kamailio World 2018

Dispatcher gateway monitoring and Load
Balancing With Congestion Detection

Julien Chavanton
Lead software engineer - voice routing @ flowroute.com

01/24/2018

Presentation summary

● Latency monitoring and congestion
estimation

● Benefits of the new algorithm

● Configuring load balancing with
congestion detection

● Expected behavior with examples

● Laboratory A/B testing and results

modparam("dispatcher", "ds_ping_interval", 1) // send SIP OPTIONS
modparam("dispatcher", "ds_ping_latency_stats", 1) // ON/OFF

modparam("dispatcher", "ds_latency_estimator_alpha", 900)
// 900/1000 this is controlling the responsiveness and memory of the EWMA

kamcmd dispatcher.list

URI: sip:14.56.98.51:5060
FLAGS: AP
PRIORITY: 12
ATTRS: {

BODY: weight=50;rweight=50
DUID:
MAXLOAD: 0
WEIGHT: 50
RWEIGHT: 50
SOCKET:

}
LATENCY: {

AVG: 72.750000
STD: 0.500000
EST: 98.750000 # 98ms – 72ms = +26ms (estimated congestion_ms)
MAX: 112
TIMEOUT: 0 # count of SIP OPTION timeouts (>fr_timer) default 30s

}

Latency monitoring in Kamailio’s dispatcher module
Added in 2017
https://www.kamailio.org/w/2017/12/dispatcher-latency-stats-monitoring-with-statsd/

New algorithm, why ?
● algorithm objective : Minimize the traffic sent to congested

gateways

● benefits : minimize the impact on media and signaling
resulting in improved connectivity and audio quality when
gateways or networks are facing problems.

● current alternative :
The best solution available, is to detect gateway timeout using
SIP OPTION pings and automatically disable unresponsive
gateways.

modparam("dispatcher", "ds_ping_interval", 1)
modparam("tm", "fr_timer", 1500) // default 30s
modparam("dispatcher", "ds_probing_threshold", 1)
modparam("dispatcher", "ds_inactive_threshold", 1)

limitations:

✗ Slow to react if timer timout value is too high

✗ Risk to run out of GW if timer timeout value is to low

✗ No memory of past problem is kept after recovering

INSERT INTO "dispatcher" VALUES(1,1,'sip:1.1.1.1:5060',0,12,'weight=50;rweight=50','');
INSERT INTO "dispatcher" VALUES(2,1,'sip:2.2.2.2:5060',0,12,'weight=50;rweight=50','');

Configuring load balancing with congestion detection

The reactivity when facing congestion can be tuned using the EWMA alpha,
a larger alpha will result in an estimator with a longer memory and faster
reaction time

When facing congestion the weight of a gateway is lowered by 1 for every congestion
ms.

In this example the GW wills support up to 50ms of estimated congestion, therefore 50
is also the cut-off value. However, the GW will still be used if all the other GWs are also
above their congestion threshold, in such case, load distribution will be based on the
ratio of congestion_ms each GW is facing.

Expected behavior example :
One or more gateway facing congestion.

Estimated latency of 85ms while average latency is 60ms.

We remove 25 points of weight (one point of weight per ms of estimated
congestion), we now have a ratio of 20% = 25/125

Expected behavior example :
All gateways congested
When the amount of estimated congestion is above the weight, the gateway is
considered congested and will receive no traffic.

However when all the gateways are considered congested, the load distribution
is done considering the ratio of congestion each gateway is facing.

Lab tests and scenario

400 CPS responsiveness analysis with high SIP
OPTIONS timeout value of 1500ms
modparam("tm", "fr_timer", 1500)

CONFIG AVG 180 AVG 200 TIMEOUT RECEIVED

no congestion control 157 688 0 50000

congestion control 149 660 0 50000

400 CPS responsiveness analysis with default (30s)
SIP OPTIONS timeout value

CONFIG AVG 180 AVG 200 TIMEOUT 200 RECEIVED

no congestion control 159 709 216 49784

congestion control 147 662 0 50000

400 CPS, when all gateways congested

tc qdisc add dev bond0 root netem delay 70ms limit 125000

CONFIG AVG 180 AVG 200 TIMEOUT 200 RECEIVED

no congestion control 307 838 0 50000

congestion control 288 833 0 50000

VOIP_PERF load test tool build on

voip_perf command
 example :

voip_perf summary
output :

voip_perf latency file :

tmux voip_perf orchestration

Thank you for listening !
Looking forward working with you on Free Software

Tests configuration and results :
https://github.com/jchavanton/kam_load_balancing

Voip Perf (based on PJ-SUA) :
https://github.com/jchavanton/voip_perf

Thanks to Flowroute for supporting my trip to Kamailio World 2018 and
Other Free software events !

Thanks to :
Amy Meyers @ Flowroute (help with Algorithm design, testing and review)

https://github.com/jchavanton/kam_load_balancing
https://github.com/jchavanton/voip_perf

	Slide 1
	Slide 2
	Slide 4
	Using WebRTC to build a Gateway? 1/3
	Using WebRTC to build a Gateway? 2/3
	Slide 8
	Live Demo
	Slide 10
	Slide 11
	Slide 12
	Slide 13

