

HOMER #SEVEN

Hello There!

Alexandr Dubovikov

Sr. Voice Architect at QSC AG, one of the major German voice and data providers

Co-Founder at QXIP a recognized and innovative Research & Development company specialized in

open source and commercial passive packet capture and realtime monitoring solutions

Our flagships include HEP, HOMER, HEPIC, SENTINL, PASTASH and many more tiny tools

QXIP and HOMER are 100% open source and powered by actual HUMANS

Alexandr, Lorenzo, Celeste, Eugen, Federico, Giacomo, Michele, Sergey, Dario, Gaetano, Joseph

HOMER #SEVEN

HOMER #SEVEN

Project Goals

HOMER 7 is a the new major release of our VoIP and RTC Troubleshooting platform
and our first step in a new direction reflecting modern architecture requirements.

Release Highlights:

● New Capture Servers & Agents
○ Independent, ready to run, portable (thanks Negbie for your massive contribs!)

● Easy to extend with new searchable protocols
○ Indexing IP Protocols, RTC Events, CDRs, JSON Objects and more!

● Full Scale Indexing and Timeseries storage
○ Data and Timeseries are now split to maximize utilization patterns

● Integration with non-HEP platforms
○ Data can be received using UDP/TCP, HTTP, Protobuf, Queues

● Stable and Documented Backend API
○ Completely redesigned API developed in NodeJS (no more PHP/Apache)

● New UI and Improved user experience
○ Completely redesigned Angular UI with modular and extensible elements

HOMER #SEVEN

➔ Capture Servers

HEPlify-Server developed in GO for high-performance and net protocols
HEPop developed in NodeJS for high-flexibility and event streams

➔ Web Services

HOMER-UI new framework inherited from the HEPIC platform
HOMER-API developed in NodeJS, easy to extend and self-serving

➔ Database

Postgres or MySQL leveraging native JSON/JSONB indexing and search
InfluxDB or Prometheus leveraging native Aggregation and Alerting features

Major Changes

HOMER #SEVEN

HEPlify-server is a stand-alone HOMER Capture Server developed in Go,
optimized for speed and simplicity. Distributed as a single binary ready to
capture TLS and UDP HEP encapsulated packets from any HEP agent.

HEPlify is captagents little brother, optimized for speed and simplicity. It's a
single binary which you can run on Linux, ARM, MIPS, Windows to capture
IPv4 or IPv6 packets and send SIP, correlated RTCP, RTCP-XR, DNS, Logs
into HOMER, handling fragmented and duplicate packets out of the box.

HEPop is a stand-alone HOMER Capture Server developed in NodeJS,
optimized for streams, flexibility and fast prototyping. Distributed via npm, it
ships ready to capture TLS and UDP HEP encapsulated packets and events
from Janus, Mediasoup, Kamailio, OpenSIPS and other RTC Gateways

New Components

HOMER #SEVEN

NATIVE JSON:

The next-generation Capture Servers are designed to
leverage the native JSON Indexing and Search
functionality provided by Postgres, Mysql, MongoDB and
already offers experimental insert support for RethinkDB,
Elasticsearch and other backends, ready with solid Bulk
processors to maximize resource usage & performance

NATIVE CORRELATION:
The latest database schema design in HOMER Seven
allows developers and integrators to easily define and
map new searchable data types with native support for
multiple correlation rules defining “virtual join” vectors
between HEP Types, Events, Reports and Logs.

Native JSON & Timeseries

NATIVE TIMESERIES:

The next-generation Capture Servers are designed to
convert specific events into tagged timeseries natively
shipped to InfluxDB, Prometheus or Elasticsearch

The new User-Interface can directly fetch data from the
connected timeseries backends of choice, providing basic
visualization including any data generated by 3rd parties

NATIVE ALERTING:
Native integrations allow users to unleash the full power of
the Alerting and Reporting capabilities provided by either
Kapacitor for InfluxDB, Alertmanager for Prometheus
and our SENTINL for Elasticsearch and more in the future

HOMER #SEVEN

Before: Homer 5.x

HEP
sipcapture

Row DB
INSERT

HOMER
API

HOMER
UI

Rotation
Script

siptrace

Captagent

PHP

Table Creation

APACHE

HOMER #SEVEN

After: Homer 7.x

Switch by
HEP
Type

Queue by
PROTO
Type

Bulk DB
INSERT
Queue

JSON Insert

INSERT INTO … (gid, create_date, protocol_header, data_header, raw) VALUES …

Table
Creation

Tags by
Metric
Type

Timeseries
> PUSH
< PULL

HOMER
API

HOMER
UI

API
Clients &
Rotation

Table by
HEP Type

Captagent

siptrace

HOMER #SEVEN

USER INTERFACE

HOMER #SEVEN

User-Interface

HOMER #SEVEN

User-Interface

HOMER #SEVEN

User-Interface

HOMER #SEVEN

User-Interface

HOMER #SEVEN

NEW FEATURE: APPLICATION INTERNALS

The event capture and correlation allows HOMER to
track internal flows alongside network flows by
leveraging the dynamic extraction features in the new
capture servers.

In this example we can observe Janus session with
handlers and actors establishing an audio and video
session through a video room plugin.

The same mechanism can be applied to other event
streams with cross correlation capabilities.

User-Interface

HOMER #SEVEN

The core components of HOMER 7.x are already available on Github for beta testers and will keep on
expanding and growing steadily over the next months. Join us to help test, debug & release faster!

● Project
○ API Documentation
○ UI Framework Documentation
○ Installers and Containers

● Capture Servers
○ Additional database support
○ Protobuf and Queuing

● User-Interface
○ Media Charts & Reporting Tabs
○ Preference Panels
○ Graph Visualization

Roadmap & Notes

HOMER #SEVEN

HOW TO

ADD A NEW PROTOCOL

HOMER #SEVEN

Adding a Protocol 1/3

CREATE TABLE hep_proto_1000_default (
 id bigint NOT NULL,
 sid character varying(256),
 create_date timestamp with time zone DEFAULT CURRENT_TIMESTAMP NOT NULL,
 protocol_header jsonb NOT NULL,
 data_header jsonb NOT NULL,
 raw character varying(5000) NOT NULL
) PARTITION RANGE(create_date);

Table names are composed using the HEP ID (proto type) and PROFILE ID (default) used to
distribute and shard packets in the database by transaction types. IE: call, registration, default

hep_proto_{id}_{type}

HOMER #SEVEN

Adding a Protocol 2/3

 Column | Type | Nullable | Default
---------------------+--------------------------+-----------+----------+------------------------------------
 id | integer | not null | nextval('mapping_schema_id_seq'::regclass)
 guid | uuid | |
 profile | character varying(100) | not null | 'default'::character varying
 hepid | integer | not null |
 hep_alias | character varying(100) | |
 version | integer | not null |
 retention | integer | not null | 10
 partition_step | integer | not null | 3600
 create_index | json | |
 create_table | text | |
 correlation_mapping | json | |
 fields_mapping | json | |
 mapping_settings | json | |
 schema_mapping | json | |
 schema_settings | json | |
 create_date | timestamp with time zone | not null | CURRENT_TIMESTAMP

HOMER #SEVEN

Adding a Protocol 3/3

● Allocate ID and TYPE for your new protocol or event type
● Create Protocol Mapping

○ Create Protocol Mapping with Retention policy 10 Days @3600 minutes
INSERT into mapping_settings(id,guid,profile,hepid,hep_alias,version,retention,partition_step)
VALUES(1,UUID,’calls’,1086,’Kamailio CDRs’,1, 10, 3600)

○ Derived table name hep_proto_1087_calls will be created automatically by the Capture Server
The Table schema is same for all HEP protocols using JSON/JSONB types

○ Add correlation policy to correlation_mapping column of the Protocol Mapping:
[{ "source_field": "data_header.callid",

 "lookup_id": 1,

 "lookup_profile": "call",

 "lookup_field": "sid",

 "lookup_range":[-300, 200]

}]

SELECT * FROM hep_proto_${lookup_id}_${lookup_profile} WHERE ${lookup_field}= ‘${source_field}’

● Start sending JSON CDRs over HEP type 1087

HOMER #SEVEN

Sip Indexing

{
 rcinfo: {

…
payload_type: 1,
correlation_id: ‘123ABCXYZ’
…

 },
 payload: 'SIP/2.0 100 Trying\nCall-ID:
123ABCXYZ\nCSeq: 1 INVITE\nFrom:
<sip:gateway@127.0.0.1>;tag=2628881569\nTo:
<sip:caller@127.0.0.2>;tag=1d24a28a0bded6c40d31e6d
b8aab9ac6.369f\nVia: SIP/2.0/UDP
192.168.1.1:48495;branch=z9hG4bK9b82aa8fb4c7705466
a3456dfff7f384333332;rport=48495\nContent-Length:
0\r\n\r\n'

}

{ HEP SOCKET }

{
 create_date: 1433719443979,
 protocol_header: { HEP HEADERS },
 data_header: { JSON INDICES },
 raw: { RAW PAYLOAD }
}

{
 “correlation_id”: “123ABCXYZ”
 “from_user”: “gateway”,
 “to_user”: “caller”,
 “method”: 100
}

{ SIP + SDP PARSER }

HOMER #SEVEN

Event Indexing

{
 "emitter":"MyJanusInstance",
 "type":1,
 "timestamp":1524561816922663,
 "session_id":5612283840003079,
 "event":{

"name":"created",
"transport":{

"transport":"janus.transport
.http",
"id":"0x60700000a820"

}
 }
}

{ TCP SOCKET }

{
 create_date: 1524561816922,
 protocol_header: { TCP HEADERS },
 data_header: { JSON INDICES },
 raw: { RAW PAYLOAD }
}

{
 "emitter":"MyJanusInstance",
 "type":1,
 "event.name":"created"
}

{ JSON Parser }

HOMER #SEVEN

Got Questions?

HOMER #SEVEN

Captagent

Capture Agents HEP Codebase

Capture Servers

< Your Code />

 RTC Events

