
Kamailio in the ITSP: 
Changing Winds

Alex Balashov

Evariste Systems LLC

Athens, Georgia, USA 

http://www.evaristesys.com/



Evariste Systems?
● Based in Athens, Georgia, USA (university town close to Atlanta);

● Kamailio consultancy from 2007;

● Vendor of CSRP (Class 4 routing product) based on Kamailio:

○ http://www.csrpswitch.com/

● Blog on Kamailio technical topics: 

○ http://www.evaristesys.com/blog/

● Provider of SIP and Kamailio training;

● Kamailio project contributor, advocate.

http://www.csrpswitch.com/
http://www.evaristesys.com/blog/


Conventional wisdom about ITSP infrastructure (2000s, 
early 2010s):
● Big, serious and real-time;

● Dedicated and ample hardware for best economies of scale;

● Cloud and virtualisation are hostile to “media performance” and “real-time” 

anything; 

○ Poor call quality and the rest.

● Real-time communications are special and require artisanal, nuanced 

infrastructure approach.



Nevertheless:
● Big shift: ITSPs embracing major cloud 

services anyhow.

○ In “developed world” only, mostly; 

AWS & friends’ POPs elsewhere are 

nonexistent.

● AWS EC2/GCE/Azure are not perfect for 

media and RTC handling;

● “Just good enough”

○ Kind of like public Internet backbone 

from late 2000s;

● Virtualisation has objectively evolved

○ Almost first-class CPU tenant; 

○ Close “to the metal”.

● CxO suite sold by:

○ Divestiture of non-core 

competencies;

○ Reduction of business 

risk and headcount 

expenditure for 

operations;

○ Fashionable trends and 

buzz, FOMO.



Fire the system admins and reduce operations headcount.

What the businesspeople want:
￼



The “big fat box” model of telecoms infrastructure:
● Big, well-resourced physical server (leased dedicated or owned);

○ Typical stats: 4+ cores, 32+ GB of RAM, SSDs, Gigabit LAN.

● Own administration, responsibility for redundancy and upkeep

○ Requires people (system admins, data centre remote hands, etc.) for care and feeding;

○ Engineering, storage, etc. mostly local concern, which can be bad without big CAPEX;

● Services provider infrastructure and applications highly centralised.

○ Big database;

○ Lots of IOps;

○ Lots of RAM;

○ Central proxy;

○ Aggregation;

○ Focus on optimising throughput.



Typical “big box” data centre architecture (CSRP):



“Big fat box” to cloud:
● Cannot simply migrate “big fat box” architecture as-is!

● Hosting on someone else’s hypervisor/infrastructure is not cloud; it’s just hosted;

○ To develop cloud-native services, you must “get” cloud;

○ Cloud platform pricing will not support this approach;

■ Will increase OPEX;

■ Not savings;

■ Big instances are very expensive.

● Cloud-native service & application characteristics:

○ Distributed;

○ Dynamic discovery / self-assembly;

○ Elasticity;

○ Dimensions fitted to instances and componentry of cloud.



● Typically requires extensive re-architecture of highly centralised applications;

● Just breaking big, centralised components (e.g. into containers) for distribution is 

not enough;

● You still need [lots of] people to build and run this! Skill sets:

○ Linux sysadmin folk traditions;

○ Updated for modern “cloud” DevOps;

■ Orchestration (Ansible, Salt, Puppet, Chef, etc.);

■ Discovery and synchronisation (e.g. Consul, Serf, Kubernetes, etcd, Redis, Route53, etc, etc.);

■ Cloud platform APIs and automation;

■ Idiosyncrasies of cloud platform (networking, limitations, economics of instances).

○ True to the name: more “dev” to go with “ops”.

“Big fat box” to cloud (cont’d):



Unexpected factors for ITSPs:
● Big instances are very expensive — cloud 

providers really, really want you to buy lots 

of smaller ones;

● Often invisible and non-obvious resource 

constraints:

○ PPS and bandwidth limits;

○ Not necessarily published;

○ Backbone and transit transfer limits.

● Occasional 

scheduling/contention/hypervisor issues;

● Network and reachability issues as artifices 

of cloud product rather than technological 

limitations;

● All of this has a-la-carte solutions and 

becomes a line item on your bill!

● Will you save money? 

○ Maybe; maybe the opposite.

● Will you reduce risk and improve 

availability?

○ Probably not, but shape of problem is 

different.



Kamailio features complementary to cloud-native dev.:
● Hot reloading:

○ dispatcher

○ rtpengine (sets defined in DB)

○ RPC 

● Fallback to mostly stateless relay (except for 

hop-by-hop messages);

● DMQ

○ dmq_usrloc and dialog replication 

○ Database-synced approaches aren’t so 

good for cloud due to 

bandwidth/backbone contsraints;

● Flexible logging;

● Flexible invocation and environment for 

containerised execution;

● http_async_client for HTTP REST interactions;

● Options to support 1-to-1 NAT and advertising of 

public addresses:

○ listen=udp:x.x.x.x:5060 advertise 
y.y.y.y:5060

○ rtpengine -i external/10.x.x.x!56.1.2.3



Thanks!
Please find me if you have further questions, or visit: http://www.evaristesys.com/


