
CI/CD and TDD in
deploying Kamailio

Aleksandar Sošić
@alexsosic

KWC 2018 - Berlin
1

Who am I?
I’m a DevOp

Owner of kinetic.hr

Developing web applications for more than a
decade

R&D manager at a SIP/VoIP cloud startup

Passionate about the Lean Startup methodology,
IoT, Blockchain and Cryptocurrencies

Outdoor enthusiast, photographer and alpinist
2

Introduction

● Usage of the DevOps cross-functional mode of working with CI/CD
in a complex multilayer microservice SIP infrastructure

● Testing single routes in Kamailio on different layers of the
architecture

● Test automation with Jenkins in a containerized environment
● Test-driven Development of Kamailio routes

3

Introductory concepts

4

DevOps

Practice that unifies software development
(Dev) and software operation (Ops)

● Shorter development cycles
● increased deployment frequency
● more dependable releases in close

alignment with business objectives

Automation and monitoring of all steps is
the key!

5

DevOps

DevOps is intended to be a cross-functional mode of working

6

7

Goals of DevOps

● Improved deployment frequency
● Faster time to market
● Lower failure rate of new releases
● Shortened lead time between fixes
● Faster mean time to recovery

8

CI/CD

Continuous integration (CI) is the practice of merging all developer
working copies to a shared mainline several times a day.

The main goal is to prevent integration problems, referred to as
"integration hell".

9

CI/CD

Continuous delivery (CD) is an approach in which teams produce
software in short cycles, ensuring that the software can be reliably
released at any time.

Relationship to continuous deployment?

Continuous delivery and DevOps have common goals and are often
used in conjunction

10

Microservice Infrastructure

AKA microservice architecture

● Structures an application as a collection of loosely coupled services
● Enables the continuous delivery/deployment of large, complex

applications
● Enables an organization to evolve its technology stack
● Services are fine-grained and the protocols are lightweight
● Improves modularity
● Makes the application easier to understand, develop and test
● Enable continuous delivery and deployment

11

Our project architecture

12

Project features and technologies used

● Containerized environment
● Stateless Kamailio instances
● Multi layer infrastructure
● K8S as container orchestrator
● Custom API for SIP infrastructure orchestration
● External Clustered DB

13

Project architecture

● Kamailio proxy and “routing” layer
● Asterisk as TPS
● RTPEngine
● Custom API SIP orchestration

14

Proxy and Router roles
Proxy:

● Proxy load balancing (callid path maintained)
● First security layer (ua/pike)

Router:

● User registration & management
● Session control
● Security (user authentication/ip filtering etc.)
● Billing
● Number normalization
● E2E routing (LCR & Carrier / Failover & Re-routing)

15

Testing Kamailio Routes

16

kamailio.cfg

#!ifdef TESTING
include_file "kamailio-test.cfg"
#!endif
...
request_route {
#!ifdef TESTING
 if ($hdr(X-evosip-Test) =~ "^TEST_") {
 route($(hdr(X-evosip-Test){s.rm,"}));
 exit;
 }
#!endif
...

17

18

SIPp

Free Open Source test tool traffic generator for the SIP protocol

● establishes and releases multiple calls
● custom XML scenario files describing call flows
● dynamic display of statistics about running tests (call rate, round trip

delay, and message statistics)
● periodic CSV statistics dumps

19

SIPp xml scenario
 <send retrans="500">
 <![CDATA[
 OPTIONS sip:[field2]@[remote_ip]:[remote_port] SIP/2.0
 Via: SIP/2.0/[transport] [local_ip]:[local_port];branch=[branch]
 From: "sipvicious" <sip:[field0]@[field1]>;tag=[call_number]
 User-Agent: sipvicious
 To: "sipvicious" <sip:[field0]@[field1]:[remote_port]>
 X-evosip-Test: TEST_IS_SCANNER
 Call-ID: [call_id]
 CSeq: [cseq] OPTIONS
 Contact: sip:[field3]@[local_ip]:[local_port]
 Max-Forwards: 70
 Content-Type: application/sdp
 Content-Length: [len]
]]>
 </send>
 <recv response="222" crlf="true"></recv>

20

Testing Kamailio

route[TEST_IS_SCANNER] {
 if(route(IS_SCANNER)) {
 xlog("L_WARNING", "SCANNER $ua BLOCKED!\n");
 sl_send_reply("222",

"Test passed, $ua scanner blocked!");
 }
 else {
 sl_send_reply("500", "Test failed: NOT A SCANNER");
 }
}

21

Testing Kamailio

#!define SCNR_BLACK_LIST "sipsak|sipvicious|..."
...
route[IS_SCANNER] {
 if ($ua =~ SCNR_BLACK_LIST) {
 return 1;
 } else {
 return 0;
 }
}

22

Writing more complex tests

Dynamic dispatcher list example

Route SHOULD_DISPATCHER_RELOAD

● Are the dispatchers already reloaded?
● Am I reloading the dispatchers?
● Does it take too long to reload the dispatchers?

23

Writing more complex tests
route[SHOULD_DISPATCHER_RELOAD] {

 if($sht(dispatcher=>list) == 1) {

 return 0;

 } else {

 $var(todate) = $(sht(dispatcher=>list){s.int}) + 60;

 if ($var(todate) < $TV(sn)) {

 return 1;

 } else {

 return 0;

 }

 }

}

24

Writing more complex tests

route[TEST_SHOULD_DISPATCHER_RELOAD] {
$var(TestsPassed) = 0;
$var(TestsNum) = 3;

Dispatcher list has been correctly reloaded
and should not be reloaded again
$sht(dispatcher=>list) = 1;
if(!route(SHOULD_DISPATCHER_RELOAD)) {

$var(TestsPassed) = $var(TestsPassed) + 1;
}

...
25

Writing more complex tests

...
 # The dispatcher list route
 # has been just triggered
 # and should not be called again for 60 seconds
 $sht(dispatcher=>list) = $TV(sn);
 if(!route(SHOULD_DISPATCHER_RELOAD)) {
 $var(TestsPassed) = $var(TestsPassed) + 1;
 }
...

26

Writing more complex tests

...
 # The dispatcher list route has been called
 # more than 60 seconds ago and should reload
 $sht(dispatcher=>list) =
 $(sht(dispatcher=>list){s.int}) - 65;
 if(route(SHOULD_DISPATCHER_RELOAD)) {
 $var(TestsPassed) = $var(TestsPassed) + 1;
 }
...

27

Writing more complex tests

...
 # Tests concluded count test number
 # and respond via sl_send_reply
 if($var(TestsPassed) == $var(TestsNum)) {

 sl_send_reply("200", "DISPATCHER RELOAD
 TRIGGER WORKING");
 } else {
 sl_send_reply("500", "DISPATCHER RELOAD
 TRIGGER NOT WORKING");
 }
}

28

Automate Tests

29

Jenkins is an open source automation server written in Java.

● Helps us automate the non-human part of the software
development process

● Does continuous integration
● Facilitates technical aspects of continuous delivery

30

CI/CD Flow

31

SIPp script for jenkins integration
#!/bin/bash

NAME="ut_kama_proxy-scanners"
SIPP=/usr/local/bin/sipp
SCENARIOS=/sipp/scenarios/"${NAME}".xml
SETTINGS=/tmp/inf_files/"${NAME}".csv
DATE_FILE=$(date '+%Y-%m-%d_%H-%M')
NODE_OWNER=$(echo "${POD_NODE}" | cut -d '.' -f 2)
NODE_DOMAIN=$(echo "${POD_NODE}" | cut -d '.' -f3-)
TARGET="proxy.${NODE_OWNER}.${NODE_DOMAIN}"

"${SIPP}" "${TARGET}" -sf "${SCENARIOS}" -l 1 -m 1 -inf "${SETTINGS}"
exit "${?}"

32

Automation with Jenkins
stage('functional tests') {
 def testPods = getPodsByPrefix("test-")
 if(testPods.size() < 1) {
 throw new Exception("No test pods found")
 }
 def testPod = testPods[0]
 echo "----\ntest pod: ${testPod.name}\n----"
 echo "executing test 'proxy scanners' on pod ${testPod.name}"
 podExec(testPod, "/sipp/scripts/ut_kama_proxy-scanners.sh", false)
 updateGitlabCommitStatus name: 'func tests', state: 'success'
}

33

Test-driven development

34

Test-driven development

Test-driven development is related to the test-first
programming concepts of extreme programming

TDD relies on the repetition of a very short
development cycle: requirements are turned into
very specific test cases, then the software is
improved to pass the new tests, only

“TDD encourages simple designs and inspires
confidence”

-- Kent Beck

35

TDD Example

route[TEST_IS_SCANNER] {
 if(route(IS_SCANNER)) {
 xlog("L_WARNING", "SCANNER $ua BLOCKED!\n");
 sl_send_reply("222",

"Test passed, $ua scanner blocked!");
 }
 else {
 sl_send_reply("500", "Test failed: NOT A SCANNER");
 }
}

36

TDD Example

37

 <send retrans="500">
 <![CDATA[
 ...
 User-Agent: sipvicious
 ...
 X-evosip-Test: TEST_IS_SCANNER
 ...
]]>
 </send>
 <recv response="222" crlf="true"></recv>

TDD Example

route[IS_SCANNER] {
 return 0;
}

38

TDD Example

route[IS_SCANNER] {
 if ($ua == "sipvicious") {
 return 1;
 } else {
 return 0;
 }
}

39

TDD Example

40

#!define SCNR_BLACK_LIST "sipsak|sipvicious|..."
...
route[IS_SCANNER] {
 if ($ua =~ SCNR_BLACK_LIST) {
 return 1;
 } else {
 return 0;
 }
}

Conclusions

● Custom test routes in Kamailio
● Request route condition for access to those routes in a testing

environment
● Automation with SIPp scenarios and Jenkins for CI/CD
● Ability to do TDD

41

www.linkedin.com/in/alexsosic/

42
alex@kinetic.hr

