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Co-founded in 2009 as an academic spin-off
o University research efforts brought to the market
o Completely independent from the University
Focus on real-time multimedia applications
e Strong perspective on standardization and open source

Several activities
e Consulting services
e Commercial support and Janus licenses
e Streaming of live events (IETF, ACM, etc.)

Proudly brewed in sunny Napoli®), Italy
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Fuzzing the
Janus WebRTC Server

And why you should fuzz too

Alessandro Toppi
Software Engineer @ Meetecho
<atoppi@meetecho.com>
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https://www.youtube.com/watch?v=bhy7-uxZGgk


https://www.youtube.com/watch?v=bhy7-uxZGqk
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How do you use AFL to fuzz RTC systems?

https://www.youtube.com/watch?v=CuxKD5zI|jVI


https://www.youtube.com/watch?v=CuxKD5zljVI
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e Project Zero is a team of security analysts employed by Google
o https://googleprojectzero.blogspot.com/


https://googleprojectzero.blogspot.com/
https://webrtchacks.com/lets-get-better-at-fuzzing-in-2019-heres-how/
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e Focus on end-to-end, and RTP testing
e Malicious endpoint generating randomized input
o Built new tools required for the task
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e Targeted many applications, and found dangerous bugs
e Apple FaceTime

o WhatsApp
o WebRTC (yikes!)
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e Project Zero is a team of security analysts employed by Google
o https://googleprojectzero.blogspot.com/

e Recently focused on videoconferencing applications
e Focus on end-to-end, and RTP testing
e Malicious endpoint generating randomized input
o Built new tools required for the task

e Targeted many applications, and found dangerous bugs
e Apple FaceTime

o WhatsApp
o WebRTC (yikes!)

Philipp Hancke’s wakeup call (crashing Janus of all things!)

https://webrtchacks.com/lets-get-better-at-fuzzing-in-2019-heres-how/
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¢ In Kamailio, focus is on SIP/SDP signalling, of course
o Media often taken care of in other components
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¢ In Kamailio, focus is on SIP/SDP signalling, of course
o Media often taken care of in other components

e WebRTC is signalling agnostic, though
e You can use SIP, or XMPP, or some JSON flavour, or [INSERT_PROTOCOL]

¢ A lot of media-related protocols to worry about instead!

STUN/TURN (NAT traversal)

DTLS/DTLS-SRTP (secure exchange of keys and data)
RTP/RTCP (or actually, SRTP/SRTCP), including RTP extensions
SCTP (data channels)
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In Kamailio, focus is on SIP/SDP signalling, of course
¢ Media often taken care of in other components

WebRTC is signalling agnostic, though
e You can use SIP, or XMPP, or some JSON flavour, or [INSERT_PROTOCOL]

A lot of media-related protocols to worry about instead!

STUN/TURN (NAT traversal)

DTLS/DTLS-SRTP (secure exchange of keys and data)
RTP/RTCP (or actually, SRTP/SRTCP), including RTP extensions
SCTP (data channels)

e ... and codec specific payloads!

o |dentifying keyframes (VP8, VP9, H.264)
e VP8 simulcast (VP8 payload descriptor)
e VP9 SVC (VP9 payload descriptor)



[ I , , ; &
M Ok, we’re scared now... what is fuzz testing? KAMAILIOWORLD
\_./

¢ Automated software testing technique

o Unexpected or invalid data submitted to a program
e Input pattern modified according to a defined strategy (e.g., for coverage)
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¢ Automated software testing technique

o Unexpected or invalid data submitted to a program
e Input pattern modified according to a defined strategy (e.g., for coverage)

e Typical workflow
© Engine generates input
@® Pattern mutated depending on existing dataset (“Corpus”)
® Input data passed to target function and monitored (e.g., via sanitizers)
@ Coverage of new lines updates stats and Corpus (new pattern)
@ Repeat until it crashes!
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¢ Automated software testing technique

o Unexpected or invalid data submitted to a program
e Input pattern modified according to a defined strategy (e.g., for coverage)

e Typical workflow
© Engine generates input
@® Pattern mutated depending on existing dataset (“Corpus”)
® Input data passed to target function and monitored (e.g., via sanitizers)
@ Coverage of new lines updates stats and Corpus (new pattern)
@ Repeat until it crashes!

¢ Repeatability can be ensured using the same seeds or previous dumps
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JANVS

WEBRTC SERVER

General purpose, open source WebRTC server
e https://github.com/meetecho/janus-gateway
e Demos and documentation: https://janus.conf.meetecho.com
e Community: https://groups.google.com/forum/#!forum/meetecho-janus



https://github.com/meetecho/janus-gateway
https://janus.conf.meetecho.com
https://groups.google.com/forum/#!forum/meetecho-janus
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e The core only implements the WebRTC stack
o JSEP/SDP, ICE, DTLS-SRTP, Data Channels, Simulcast, VP9-SVC, ...
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e Plugins expose Janus API over different “transports”

e Currently HTTP / WebSockets / RabbitMQ / Unix Sockets / MQTT / Nanomsg
e “Application” logic implemented in plugins too

e Users attach to plugins via the Janus core

e The core handles the WebRTC stuff
¢ Plugins route/manipulate the media/data
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The core only implements the WebRTC stack
o JSEP/SDP, ICE, DTLS-SRTP, Data Channels, Simulcast, VP9-SVC, ...

Plugins expose Janus API over different “transports”
e Currently HTTP / WebSockets / RabbitMQ / Unix Sockets / MQTT / Nanomsg

“Application” logic implemented in plugins too
e Users attach to plugins via the Janus core
e The core handles the WebRTC stuff
¢ Plugins route/manipulate the media/data

Plugins can be combined on client side as “bricks”
¢ Video SFU, Audio MCU, SIP gatewaying, broadcasting, etc.
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e Many protocols via dependencies are fuzzed already
e ICE/STUN/TURN (libnice)
e DTLS/DTLS-SRTP (OpenSSL/LibreSSL/BoringSSL)
o SRTP/SRTCP (libsrtp)
e SCTP (usrsctplib)
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e Some other dependencies MAY need fuzzing (but not in Janus?)
e Transports (HTTP, WebSockets, RabbitMQ, etc.)
e JSON support (Jansson)
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e Many protocols via dependencies are fuzzed already

e ICE/STUN/TURN (libnice)

e DTLS/DTLS-SRTP (OpenSSL/LibreSSL/BoringSSL)
e SRTP/SRTCP (libsrtp)

e SCTP (usrsctplib)

e Some other dependencies MAY need fuzzing (but not in Janus?)
e Transports (HTTP, WebSockets, RabbitMQ, etc.)
e JSON support (Jansson)

e Others were done by us, so DEFINITELY need fuzzing ©

e RTCP parsing (e.g., compound packets)
e RTP processing (e.g., RTP extensions, codec specific payloads)

e SDP parsing and processing



® 0 _ : | G
M A quick intro to libFuzzer KAMAILIOWORLD
S

e Popular coverage-guided fuzzing engine, part of the LLVM project
¢ https://llvm.org/docs/LibFuzzer.html
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e Used by several well known applications

¢ glibc, OpenSSL/LibreSSL/BoringSSL, SQLite, FFmpeg and many more
e Made sense for us to have a look at it too!


https://llvm.org/docs/LibFuzzer.html

CONFERENCE & EXHIBITION

—
.M. A quick intro to libFuzzer KAMAILIOWORLD

e Popular coverage-guided fuzzing engine, part of the LLVM project
o https://livm.org/docs/LibFuzzer.html

e Used by several well known applications

¢ glibc, OpenSSL/LibreSSL/BoringSSL, SQLite, FFmpeg and many more
e Made sense for us to have a look at it too!

¢ A few key characteristics

o Needs sources to be compiled with Clang

e Works in-process (linked with the library/application under test)

o Feeds inputs to the target via a fuzzing entrypoint (target function)

o Execution of the target function is monitored with sanitizers tools (e.g., libasan)


https://llvm.org/docs/LibFuzzer.html

.M. Wait, “coverage-guided fuzzing”?

Fuzzing
Engine

Execute
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© Implement the method to receive and process the input data

// my_ fuzzer.c

int LLVMFuzzerTestOneInput (const uint8_t =xData, size_t Size) ({
ProcessData (Data, Size);
return 0;
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// my_fuzzer.c

int LLVMFuzzerTestOneInput (const uint8_t =xData, size_t Size) ({
ProcessData (Data, Size);
return 0;

}
® Compile with Clang and the right flags

> clang —-g -0l1 -fsanitize=fuzzer, address,undefined my_ fuzzer.c
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ProcessData (Data, Size);
return 0;

}
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® Launch passing the Corpus folder as the argument

> ./my_fuzzer CORPUS_DIR
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© Implement the method to receive and process the input data

// my_ fuzzer.c

int LLVMFuzzerTestOneInput (const uint8_t =xData, size_t Size) ({
ProcessData (Data, Size);
return 0;

}
® Compile with Clang and the right flags
> clang -g -01 -fsanitize=fuzzer, address,undefined my_ fuzzer.c
® Launch passing the Corpus folder as the argument
> ./my_fuzzer CORPUS_DIR
@ In case of crashes, pass the dumped input! (e.g., via gdb, or to test regressions)

> gdb --args ./my_ fuzzer crash-file-dump
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o First step was Clang support (Janus normally built with gcc)
e Streamlined compilation flags in the process
o Got useful warnings that led to some fixes too!


https://github.com/meetecho/janus-gateway/pull/1492
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o Got useful warnings that led to some fixes too!

e Next step was choosing what to fuzz
¢ Decided to start with RTCP
e Compound packets + length values + overflows = “fun”!

e Then worked on the libFuzzer workflow
@ Fuzzing target with critical RTCP-related functions
® Helper script to build the fuzzer
® Helper script to run the fuzzer
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o First step was Clang support (Janus normally built with gcc)
e Streamlined compilation flags in the process
o Got useful warnings that led to some fixes too!

e Next step was choosing what to fuzz
¢ Decided to start with RTCP
e Compound packets + length values + overflows = “fun”!

e Then worked on the libFuzzer workflow
@ Fuzzing target with critical RTCP-related functions
® Helper script to build the fuzzer
® Helper script to run the fuzzer

Original pull request (now merged, with RTP and SDP fuzzing as well)

https://github.com/meetecho/janus-gateway/pull/1492
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// fuzz-rtcp.c
#include "janus/rtcp.h"
int LLVMFuzzerTestOneInput (const uint8_t =xdata, size_t size) ({

if (size < 8 || size > 1472)
return O;

if (!janus_is_rtcp(data, size))
return 0;

/* Initialize an empty RTCP context =*/
janus_rtcp_context ctx;

janus_rtcp_parse(ctx, (char *)data, size);

GSList *1list = janus_rtcp_get_nacks ((char x)data, size);

if (list)
g_slist_free(list);
return O;
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zen LT
225 12 }

226

227 1.00k gboolean janus_rtcp_check_len(janus_rtcp_header *rtcp, int len) {

228 1.00k if (len < (int)sizeof(janus_rtcp header) + (int)sizeof(uint32 t)} {

229 13 JANUS_LOG(LOG_VERB, "Packet size is too small (%d bytes) to contain RTCP\n", len);

230 13 return FALSE;

231 13}

232 995  int header_def_len = 4*(int)ntohs(rtcp->length) + 4;

233 995  if (len < header def len) {

234 78 JANUS LOG(LOG VERB, "Invalid RTCP packet defined length, expected %d bytes > actual %d bytes\n", header def len, len);
235 78 return FALSE;

236 78}

237 917 return TRUE;

238 917 }

239

248 12 gboolean janus_rtcp check srijanus rtcp header *rtcp, int len) {

241 12 if (len < (int)sizeof(janus_rtcp header) + (int)sizeof(uint32_t} + (int)sizeof(sender infa)) {

242 [ JANUS_LOG(LOG_VERB, "RTCP Packet is too small (%d bytes) to contain SR\n", len);

243 [} return FALSE;

244

245 12 int header rb len = (int)(rtcp->rc}*(int)sizeof(report block);

246 12 int actual rb_len = len - (int)sizeof(janus rtcp header) - (int}sizeof(uint32 t) - (int)sizeof(sender infa);
247 12 if (actual_rb_len < header_rb_len) {

248 ] JANUS LOG(LOG VERB, "SR got %d RB count, expected %d bytes > actual %d bytes\n", rtcp->rc, header rb len, actual rb len);
249 a return FALSE;

250 o [}

251 12 return TRUE;

252 12 }

253

254 24 gboolean janus_rtcp_check rr{janus rtcp header *rtcp, int len) {
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: a shared effort!

Pull requests Issues Marketplace Explore

RTC-Cartel / webrtc-fuzzer-corpora © Watch ~

<> Code Issues 1

Pull requests o Projects o Wiki Insights Settings

libFuzzer corpus files for WebRTC

Manage topics

8 commits

¥ 1 branch O Oreleases

Branch: master v New pull request Create new file  Upload files

B atorpi and isc Add Janus RTP crash files. (45)

8 corpora
. reports
[El README.md

B add_shat.sh

README.md

Add Janus corpus and crash files for RTGP
Add Janus RTP crash files. (5)
Cosmetic

Helper script to append shat hash to filename and detect duplicates (#4)

o
IKAMAILIOWORLD
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Kstar 2 YFork 1

Edit

42 2 contributors

LT Clone or download ~

Latest commit 2e4c5a4 on 7 Mar
3 months ago

amonth ago

3 months ago

3 months ago

s

https://github.com/RTC-Cartel/webrtc-fuzzer-corpora (thx, Ifiaki!)
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- Upstream project

3. Sync and

build from: .
T Builder
(jenkins.io)
google/oss-fuzz GCS bucket
5. Download
4. Upload and fuzz
‘ ' ClusterFuzz
1. Write fuzzers
2, Commit build configs 6. File bugs,
Verify fixes
8. Fix bugs
[—=1-" Track deadlines
Developer m Sheriffbot

Issue tracker (monorail)

https://github.com/google/oss-fuzz/pull/2241 (Janus is in, yay!)
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Welcome

Welcome to ClusterFuzz, the fuzzing infrastructure behind OSS-Fuzz. Here you can look at crashes, statistics, and coverage information for your fuzzers. Below is an overview of your projects and their fuzzing
configurations.

ALL CURRENT CRASHES ~ BUILDS STATUS ~ DOCUMENTATION ~ REPORT A BUG

janus-gateway

OPEN CRASHES ~ CRASHSTATS  TOTAL COVERAGE

afl_asan_janus-gateway libfuzzer_asan_janus-gateway libfuzzer_msan_janus-gateway libfuzzer_ubsan_janus-gateway

Fuzzing engine: AFL Fuzzing engine: libFuzzer Fuzzing engine: libFuzzer Fuzzing engine: libFuzzer
Sanitizer: address (ASAN) Sanitizer: address (ASAN) Sanitizer: memory (MSAN) Sanitizer: undefined (UBSAN)

FUZZER STATS/COVERAGE FUZZER STATS/COVERAGE FUZZER STATS/COVERAGE FUZZER STATS/COVERAGE

https://github.com/google/oss-fuzz/pull/2241 (Janus is in, yay!)


https://github.com/google/oss-fuzz/pull/2241

() : : . '@
M A detailed tutorial on how to setup all this! KAMAILIOWORLD
\-/

e

How Janus Battled libFuzzer and Won (Alessandro Toppi) - webrtcHacks - Google Chrome 0006

B How Janus Battled libFuzze x | +

< c @

‘webrtchacks.com

webrtcH4cKS: "6 i

Home. About Subscribe Contact cogint.ai - Al in RTG

Posted by Alessandro Toppl on March 6, 2019

webrtcH4cKS: ~ How Janus Battled libFuzzer and
Won (Alessandro Toppi)

Posted In: Guide. Leave a Comment

Tagged: fuzzing, janus,libfuzzer, 0SS-Fuzz, wireshark.

Thanks to work initiated by Google Project Zero, fuzzing has become a popular topic within
WeDRTC since late last year. It was clear WebRTC was lacking in this area. However, the
community has shown its strength by giving this topic an immense amount of focus and
resolving many issues. In a previous post, we showed how to break the Janus Server RTCP
parser. The Meetecho team behind Janus did not take that lightly. They got to the bottom of
what turned out to be quite a big project. In this post Alessandro Toppi of Meetecho will walk us
through how they fixed this problem and built an automated process to help make sure it

SEARCH

New PosTt
NOTIFICATIONS

Emall Address

First Name.

LastName

https://webrtchacks.com/fuzzing-janus/
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e So far, we only fuzzed RTP, RTCP and in part SDP in the core
e SDP fuzzing should be improved (maybe with structure-aware fuzzing?)
e Fuzzing signalling might be nice, but so many transports!
e What about plugins and their custom interactions?
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e So far, we only fuzzed RTP, RTCP and in part SDP in the core

e SDP fuzzing should be improved (maybe with structure-aware fuzzing?)
e Fuzzing signalling might be nice, but so many transports!
e What about plugins and their custom interactions?

 Definitely expand the corpora

e The shared RTC-Cartel repo should help with that
o Let’s see if what crashed you crashed us too, and viceversa!
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e So far, we only fuzzed RTP, RTCP and in part SDP in the core

e SDP fuzzing should be improved (maybe with structure-aware fuzzing?)
e Fuzzing signalling might be nice, but so many transports!
e What about plugins and their custom interactions?

 Definitely expand the corpora

e The shared RTC-Cartel repo should help with that
o Let’s see if what crashed you crashed us too, and viceversa!

e libFuzzer is not the only option here

e Henning and Sandro introduced AFL, Radamsa, Gasoline and others last year
o KITE and its “weaponised” browsers can be very helpful as an orthogonal testing tool
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Get in touch!
e W hitps://twitter.com/elminiero
e W hitps:/twitter.com/meetecho
€ http://www.meetecho.com
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