—
KAMAILIOWORLD

EEEEEEEEEEEEEEEEEEEEE

What The Fuzz!
Or Why You Should Really
Fuzz Your RTC Code

Lorenzo Miniero
@elminiero

Kamailio World
May 7t 2019, mm

https://twitter.com/elminiero

.M. A fuzzy intro

KAMAILIOWORLD

CONFERENCE & EXHIBITION

Lorenzo Miniero
e Ph.D @ UniNA
e Chairman @ Meetecho
e Barber shop avoider

Contacts and info
e lorenzo@meetecho.com
o https://twitter.com/elminiero
e https://www.slideshare.net/LorenzoMiniero

lorenzo@meetecho.com
https://twitter.com/elminiero
https://www.slideshare.net/LorenzoMiniero

® 0 @
M Just a few words on Meetecho KAMAILIO WORLD
_./

Co-founded in 2009 as an academic spin-off
o University research efforts brought to the market
o Completely independent from the University
Focus on real-time multimedia applications
e Strong perspective on standardization and open source

Several activities
e Consulting services
e Commercial support and Janus licenses
e Streaming of live events (IETF, ACM, etc.)

Proudly brewed in sunny Napoli®), Italy

0Y09)09

(“'You may have heard of it)

@
KAMAILIO WORLD

CONFERENCE & EXHIBITION

® 0 . . ['
M Kudos to Alessandro Toppi for this content! KAMAILIOWORLD
_./

Fuzzing the
Janus WebRTC Server

And why you should fuzz too

Alessandro Toppi
Software Engineer @ Meetecho
<atoppi@meetecho.com>

L N] :
Q FOSDEM [+ %QTCNEVS

® 0 .. -
M Hot topic in Kamailio talks already! KAMAILIOWORLD
_./

pascom

https://www.youtube.com/watch?v=bhy7-uxZGgk

https://www.youtube.com/watch?v=bhy7-uxZGqk

o0 - .
M Kamailio lovers know fuzzing already

r—\‘
KAMAILIOWORLD

CONFERENCE & EXHIBITION

Kama\\\o“"
K
"Maij
" Woryy

How do you use AFL to fuzz RTC systems?

https://www.youtube.com/watch?v=CuxKD5zI|jVI

https://www.youtube.com/watch?v=CuxKD5zljVI

[I , «
M Why another talk on fuzzing, then? KAMAILIOWORLD
_./

e Project Zero is a team of security analysts employed by Google
o https://googleprojectzero.blogspot.com/

https://googleprojectzero.blogspot.com/
https://webrtchacks.com/lets-get-better-at-fuzzing-in-2019-heres-how/

[I , f
M Why another talk on fuzzing, then? St LD
_./

e Project Zero is a team of security analysts employed by Google
o https://googleprojectzero.blogspot.com/

e Recently focused on videoconferencing applications
e Focus on end-to-end, and RTP testing
e Malicious endpoint generating randomized input
o Built new tools required for the task

https://googleprojectzero.blogspot.com/
https://webrtchacks.com/lets-get-better-at-fuzzing-in-2019-heres-how/

() : "
M Why another talk on fuzzing, then? St LD
\../

e Project Zero is a team of security analysts employed by Google
o https://googleprojectzero.blogspot.com/

e Recently focused on videoconferencing applications
e Focus on end-to-end, and RTP testing
e Malicious endpoint generating randomized input
o Built new tools required for the task

e Targeted many applications, and found dangerous bugs
e Apple FaceTime

o WhatsApp
o WebRTC (yikes!)

https://googleprojectzero.blogspot.com/
https://webrtchacks.com/lets-get-better-at-fuzzing-in-2019-heres-how/

[I , «
M Why another talk on fuzzing, then? KAMAILIOWORLD
_./

e Project Zero is a team of security analysts employed by Google
o https://googleprojectzero.blogspot.com/

e Recently focused on videoconferencing applications
e Focus on end-to-end, and RTP testing
e Malicious endpoint generating randomized input
o Built new tools required for the task

e Targeted many applications, and found dangerous bugs
e Apple FaceTime

o WhatsApp
o WebRTC (yikes!)

Philipp Hancke’s wakeup call (crashing Janus of all things!)

https://webrtchacks.com/lets-get-better-at-fuzzing-in-2019-heres-how/

https://googleprojectzero.blogspot.com/
https://webrtchacks.com/lets-get-better-at-fuzzing-in-2019-heres-how/

[I . , f
M Project Zero scaring the fuzz out of us KAMAILIOWORLD
_./

¢ In Kamailio, focus is on SIP/SDP signalling, of course
o Media often taken care of in other components

[I . , f
M Project Zero scaring the fuzz out of us KAMAILIOWORLD
_./

¢ In Kamailio, focus is on SIP/SDP signalling, of course
o Media often taken care of in other components

e WebRTC is signalling agnostic, though
e You can use SIP, or XMPP, or some JSON flavour, or [INSERT_PROTOCOL]

[I . , f
M Project Zero scaring the fuzz out of us KAMAILIOWORLD
\../

¢ In Kamailio, focus is on SIP/SDP signalling, of course
o Media often taken care of in other components

e WebRTC is signalling agnostic, though
e You can use SIP, or XMPP, or some JSON flavour, or [INSERT_PROTOCOL]

¢ A lot of media-related protocols to worry about instead!

STUN/TURN (NAT traversal)

DTLS/DTLS-SRTP (secure exchange of keys and data)
RTP/RTCP (or actually, SRTP/SRTCP), including RTP extensions
SCTP (data channels)

[I . , f
M Project Zero scaring the fuzz out of us KAMAILIOWORLD
\../

In Kamailio, focus is on SIP/SDP signalling, of course
¢ Media often taken care of in other components

WebRTC is signalling agnostic, though
e You can use SIP, or XMPP, or some JSON flavour, or [INSERT_PROTOCOL]

A lot of media-related protocols to worry about instead!

STUN/TURN (NAT traversal)

DTLS/DTLS-SRTP (secure exchange of keys and data)
RTP/RTCP (or actually, SRTP/SRTCP), including RTP extensions
SCTP (data channels)

e ... and codec specific payloads!

o |dentifying keyframes (VP8, VP9, H.264)
e VP8 simulcast (VP8 payload descriptor)
e VP9 SVC (VP9 payload descriptor)

[I , , ; &
M Ok, we’re scared now... what is fuzz testing? KAMAILIOWORLD
_./

¢ Automated software testing technique

o Unexpected or invalid data submitted to a program
e Input pattern modified according to a defined strategy (e.g., for coverage)

[I , , : «
M Ok, we’re scared now... what is fuzz testing? KAMAILIOWORLD
\../

¢ Automated software testing technique

o Unexpected or invalid data submitted to a program
e Input pattern modified according to a defined strategy (e.g., for coverage)

e Typical workflow
© Engine generates input
@® Pattern mutated depending on existing dataset (“Corpus”)
® Input data passed to target function and monitored (e.g., via sanitizers)
@ Coverage of new lines updates stats and Corpus (new pattern)
@ Repeat until it crashes!

[I , , : «
M Ok, we’re scared now... what is fuzz testing? KAMAILIOWORLD
\../

¢ Automated software testing technique

o Unexpected or invalid data submitted to a program
e Input pattern modified according to a defined strategy (e.g., for coverage)

e Typical workflow
© Engine generates input
@® Pattern mutated depending on existing dataset (“Corpus”)
® Input data passed to target function and monitored (e.g., via sanitizers)
@ Coverage of new lines updates stats and Corpus (new pattern)
@ Repeat until it crashes!

¢ Repeatability can be ensured using the same seeds or previous dumps

r_\\.;
O KAMAILIOWORLD
M _/

JANVS

WEBRTC SERVER

General purpose, open source WebRTC server
e https://github.com/meetecho/janus-gateway
e Demos and documentation: https://janus.conf.meetecho.com
e Community: https://groups.google.com/forum/#!forum/meetecho-janus

https://github.com/meetecho/janus-gateway
https://janus.conf.meetecho.com
https://groups.google.com/forum/#!forum/meetecho-janus

. . . r_\
M Modular architecture KAMAILIOWORLD
_./

e The core only implements the WebRTC stack
o JSEP/SDP, ICE, DTLS-SRTP, Data Channels, Simulcast, VP9-SVC, ...

()) f
M Modular architecture KAMAILIOWORLD
_./

e The core only implements the WebRTC stack
o JSEP/SDP, ICE, DTLS-SRTP, Data Channels, Simulcast, VP9-SVC, ...
e Plugins expose Janus API over different “transports”
e Currently HTTP / WebSockets / RabbitMQ / Unix Sockets / MQTT / Nanomsg

()) f
M Modular architecture KAMAILIOWORLD
\../

e The core only implements the WebRTC stack
o JSEP/SDP, ICE, DTLS-SRTP, Data Channels, Simulcast, VP9-SVC, ...

e Plugins expose Janus API over different “transports”

e Currently HTTP / WebSockets / RabbitMQ / Unix Sockets / MQTT / Nanomsg
e “Application” logic implemented in plugins too

e Users attach to plugins via the Janus core

e The core handles the WebRTC stuff
¢ Plugins route/manipulate the media/data

()) f
M Modular architecture KAMAILIOWORLD
\../

The core only implements the WebRTC stack
o JSEP/SDP, ICE, DTLS-SRTP, Data Channels, Simulcast, VP9-SVC, ...

Plugins expose Janus API over different “transports”
e Currently HTTP / WebSockets / RabbitMQ / Unix Sockets / MQTT / Nanomsg

“Application” logic implemented in plugins too
e Users attach to plugins via the Janus core
e The core handles the WebRTC stuff
¢ Plugins route/manipulate the media/data

Plugins can be combined on client side as “bricks”
¢ Video SFU, Audio MCU, SIP gatewaying, broadcasting, etc.

[I)
M What should we fuzz, here? KAMAILIOWORLD
_./

e Many protocols via dependencies are fuzzed already
e ICE/STUN/TURN (libnice)
e DTLS/DTLS-SRTP (OpenSSL/LibreSSL/BoringSSL)
o SRTP/SRTCP (libsrtp)
e SCTP (usrsctplib)

()
M What should we fuzz, here? KAMAILIOWORLD
_./

e Many protocols via dependencies are fuzzed already

e ICE/STUN/TURN (libnice)

e DTLS/DTLS-SRTP (OpenSSL/LibreSSL/BoringSSL)
e SRTP/SRTCP (libsrtp)

e SCTP (usrsctplib)

e Some other dependencies MAY need fuzzing (but not in Janus?)
e Transports (HTTP, WebSockets, RabbitMQ, etc.)
e JSON support (Jansson)

()
M What should we fuzz, here? KAMAILIOWORLD
\../

e Many protocols via dependencies are fuzzed already

e ICE/STUN/TURN (libnice)

e DTLS/DTLS-SRTP (OpenSSL/LibreSSL/BoringSSL)
e SRTP/SRTCP (libsrtp)

e SCTP (usrsctplib)

e Some other dependencies MAY need fuzzing (but not in Janus?)
e Transports (HTTP, WebSockets, RabbitMQ, etc.)
e JSON support (Jansson)

e Others were done by us, so DEFINITELY need fuzzing ©

e RTCP parsing (e.g., compound packets)
e RTP processing (e.g., RTP extensions, codec specific payloads)

e SDP parsing and processing

® 0 _ : | G
M A quick intro to libFuzzer KAMAILIOWORLD
S

e Popular coverage-guided fuzzing engine, part of the LLVM project
¢ https://llvm.org/docs/LibFuzzer.html

https://llvm.org/docs/LibFuzzer.html

[I . , @
M A quick intro to libFuzzer I
_./

e Popular coverage-guided fuzzing engine, part of the LLVM project
¢ https://llvm.org/docs/LibFuzzer.html

e Used by several well known applications

¢ glibc, OpenSSL/LibreSSL/BoringSSL, SQLite, FFmpeg and many more
e Made sense for us to have a look at it too!

https://llvm.org/docs/LibFuzzer.html

CONFERENCE & EXHIBITION

—
.M. A quick intro to libFuzzer KAMAILIOWORLD

e Popular coverage-guided fuzzing engine, part of the LLVM project
o https://livm.org/docs/LibFuzzer.html

e Used by several well known applications

¢ glibc, OpenSSL/LibreSSL/BoringSSL, SQLite, FFmpeg and many more
e Made sense for us to have a look at it too!

¢ A few key characteristics

o Needs sources to be compiled with Clang

e Works in-process (linked with the library/application under test)

o Feeds inputs to the target via a fuzzing entrypoint (target function)

o Execution of the target function is monitored with sanitizers tools (e.g., libasan)

https://llvm.org/docs/LibFuzzer.html

.M. Wait, “coverage-guided fuzzing”?

Fuzzing
Engine

Execute
Fuzzing
Target

Update
corpus

Minimize

@
KAMAILIOWORLD

CONFERENCE & EXHIBITION

Evaluate
code
coverage

o0 . . . g : @« -
M libFuzzer in (simplified) practice KAMAILIOWORLD
_./

© Implement the method to receive and process the input data

// my_ fuzzer.c

int LLVMFuzzerTestOneInput (const uint8_t =xData, size_t Size) ({
ProcessData (Data, Size);
return 0;

o0 . . . - . f
M libFuzzer in (simplified) practice KAMAILIO WORLD
_./

© Implement the method to receive and process the input data

// my_fuzzer.c

int LLVMFuzzerTestOneInput (const uint8_t =xData, size_t Size) ({
ProcessData (Data, Size);
return 0;

}
® Compile with Clang and the right flags

> clang —-g -0l1 -fsanitize=fuzzer, address,undefined my_ fuzzer.c

o . e : f
M libFuzzer in (simplified) practice KAMAILIOWORLD
SN

© Implement the method to receive and process the input data

// my_fuzzer.c

int LLVMFuzzerTestOneInput (const uint8_t =xData, size_t Size) ({
ProcessData (Data, Size);
return 0;

}
® Compile with Clang and the right flags

> clang —-g -0l1 -fsanitize=fuzzer, address,undefined my_ fuzzer.c
® Launch passing the Corpus folder as the argument

> ./my_fuzzer CORPUS_DIR

o . e : f
M libFuzzer in (simplified) practice KAMAILIOWORLD
SN

© Implement the method to receive and process the input data

// my_ fuzzer.c

int LLVMFuzzerTestOneInput (const uint8_t =xData, size_t Size) ({
ProcessData (Data, Size);
return 0;

}
® Compile with Clang and the right flags
> clang -g -01 -fsanitize=fuzzer, address,undefined my_ fuzzer.c
® Launch passing the Corpus folder as the argument
> ./my_fuzzer CORPUS_DIR
@ In case of crashes, pass the dumped input! (e.g., via gdb, or to test regressions)

> gdb --args ./my_ fuzzer crash-file-dump

® 0 N _ @
= Integrating libFuzzer in Janus KAMAILIOWORLD
S

o First step was Clang support (Janus normally built with gcc)
e Streamlined compilation flags in the process
o Got useful warnings that led to some fixes too!

https://github.com/meetecho/janus-gateway/pull/1492

o0 L : -
= Integrating libFuzzer in Janus KAMAILIOWORLD
S

o First step was Clang support (Janus normally built with gcc)
e Streamlined compilation flags in the process
o Got useful warnings that led to some fixes too!

e Next step was choosing what to fuzz
¢ Decided to start with RTCP
e Compound packets + length values + overflows = “fun”!

https://github.com/meetecho/janus-gateway/pull/1492

® 0 L : « -
M Integrating libFuzzer in Janus KAMAILIOWORLD
S

o First step was Clang support (Janus normally built with gcc)
e Streamlined compilation flags in the process
o Got useful warnings that led to some fixes too!

e Next step was choosing what to fuzz
¢ Decided to start with RTCP
e Compound packets + length values + overflows = “fun”!

e Then worked on the libFuzzer workflow
@ Fuzzing target with critical RTCP-related functions
® Helper script to build the fuzzer
® Helper script to run the fuzzer

https://github.com/meetecho/janus-gateway/pull/1492

o0 L : « -
= Integrating libFuzzer in Janus KAMAILIOWORLD
S

o First step was Clang support (Janus normally built with gcc)
e Streamlined compilation flags in the process
o Got useful warnings that led to some fixes too!

e Next step was choosing what to fuzz
¢ Decided to start with RTCP
e Compound packets + length values + overflows = “fun”!

e Then worked on the libFuzzer workflow
@ Fuzzing target with critical RTCP-related functions
® Helper script to build the fuzzer
® Helper script to run the fuzzer

Original pull request (now merged, with RTP and SDP fuzzing as well)

https://github.com/meetecho/janus-gateway/pull/1492

https://github.com/meetecho/janus-gateway/pull/1492

o0 L : -
= Integrating libFuzzer in Janus KAMAILIOWORLD
S

// fuzz-rtcp.c
#include "janus/rtcp.h"
int LLVMFuzzerTestOneInput (const uint8_t =xdata, size_t size) ({

if (size < 8 || size > 1472)
return O;

if (!janus_is_rtcp(data, size))
return 0;

/* Initialize an empty RTCP context =*/
janus_rtcp_context ctx;

janus_rtcp_parse(ctx, (char *)data, size);

GSList *1list = janus_rtcp_get_nacks ((char x)data, size);

if (list)
g_slist_free(list);
return O;

H Presenting the code coverage RAMAINOVYORED
_/

zen LT
225 12 }

226

227 1.00k gboolean janus_rtcp_check_len(janus_rtcp_header *rtcp, int len) {

228 1.00k if (len < (int)sizeof(janus_rtcp header) + (int)sizeof(uint32 t)} {

229 13 JANUS_LOG(LOG_VERB, "Packet size is too small (%d bytes) to contain RTCP\n", len);

230 13 return FALSE;

231 13}

232 995 int header_def_len = 4*(int)ntohs(rtcp->length) + 4;

233 995 if (len < header def len) {

234 78 JANUS LOG(LOG VERB, "Invalid RTCP packet defined length, expected %d bytes > actual %d bytes\n", header def len, len);
235 78 return FALSE;

236 78}

237 917 return TRUE;

238 917 }

239

248 12 gboolean janus_rtcp check srijanus rtcp header *rtcp, int len) {

241 12 if (len < (int)sizeof(janus_rtcp header) + (int)sizeof(uint32_t} + (int)sizeof(sender infa)) {

242 [JANUS_LOG(LOG_VERB, "RTCP Packet is too small (%d bytes) to contain SR\n", len);

243 [} return FALSE;

244

245 12 int header rb len = (int)(rtcp->rc}*(int)sizeof(report block);

246 12 int actual rb_len = len - (int)sizeof(janus rtcp header) - (int}sizeof(uint32 t) - (int)sizeof(sender infa);
247 12 if (actual_rb_len < header_rb_len) {

248] JANUS LOG(LOG VERB, "SR got %d RB count, expected %d bytes > actual %d bytes\n", rtcp->rc, header rb len, actual rb len);
249 a return FALSE;

250 o [}

251 12 return TRUE;

252 12 }

253

254 24 gboolean janus_rtcp_check rr{janus rtcp header *rtcp, int len) {

.H. Corpora files

: a shared effort!

Pull requests Issues Marketplace Explore

RTC-Cartel / webrtc-fuzzer-corpora © Watch ~

<> Code Issues 1

Pull requests o Projects o Wiki Insights Settings

libFuzzer corpus files for WebRTC

Manage topics

8 commits

¥ 1 branch O Oreleases

Branch: master v New pull request Create new file Upload files

B atorpi and isc Add Janus RTP crash files. (45)

8 corpora
. reports
[El README.md

B add_shat.sh

README.md

Add Janus corpus and crash files for RTGP
Add Janus RTP crash files. (5)
Cosmetic

Helper script to append shat hash to filename and detect duplicates (#4)

o
IKAMAILIOWORLD

CONFERENCE & EXHIBITION

Kstar 2 YFork 1

Edit

42 2 contributors

LT Clone or download ~

Latest commit 2e4c5a4 on 7 Mar
3 months ago

amonth ago

3 months ago

3 months ago

s

https://github.com/RTC-Cartel/webrtc-fuzzer-corpora (thx, Ifiaki!)

https://github.com/RTC-Cartel/webrtc-fuzzer-corpora

() o o o« —
M Scalable distributed fuzzing via OSS-Fuzz KAMAILIOWORLD
_/

- Upstream project

3. Sync and

build from: .
T Builder
(jenkins.io)
google/oss-fuzz GCS bucket
5. Download
4. Upload and fuzz
‘ ' ClusterFuzz
1. Write fuzzers
2, Commit build configs 6. File bugs,
Verify fixes
8. Fix bugs
[—=1-" Track deadlines
Developer m Sheriffbot

Issue tracker (monorail)

https://github.com/google/oss-fuzz/pull/2241 (Janus is in, yay!)

https://github.com/google/oss-fuzz/pull/2241

i"i Scalable distributed fuzzing via OSS-Fuzz cAmLoworto

CONFERENCE & EXHIBITION

Welcome

Welcome to ClusterFuzz, the fuzzing infrastructure behind OSS-Fuzz. Here you can look at crashes, statistics, and coverage information for your fuzzers. Below is an overview of your projects and their fuzzing
configurations.

ALL CURRENT CRASHES ~ BUILDS STATUS ~ DOCUMENTATION ~ REPORT A BUG

janus-gateway

OPEN CRASHES ~ CRASHSTATS TOTAL COVERAGE

afl_asan_janus-gateway libfuzzer_asan_janus-gateway libfuzzer_msan_janus-gateway libfuzzer_ubsan_janus-gateway

Fuzzing engine: AFL Fuzzing engine: libFuzzer Fuzzing engine: libFuzzer Fuzzing engine: libFuzzer
Sanitizer: address (ASAN) Sanitizer: address (ASAN) Sanitizer: memory (MSAN) Sanitizer: undefined (UBSAN)

FUZZER STATS/COVERAGE FUZZER STATS/COVERAGE FUZZER STATS/COVERAGE FUZZER STATS/COVERAGE

https://github.com/google/oss-fuzz/pull/2241 (Janus is in, yay!)

https://github.com/google/oss-fuzz/pull/2241

() : : . '@
M A detailed tutorial on how to setup all this! KAMAILIOWORLD
\-/

e

How Janus Battled libFuzzer and Won (Alessandro Toppi) - webrtcHacks - Google Chrome 0006

B How Janus Battled libFuzze x | +

< c @

‘webrtchacks.com

webrtcH4cKS: "6 i

Home. About Subscribe Contact cogint.ai - Al in RTG

Posted by Alessandro Toppl on March 6, 2019

webrtcH4cKS: ~ How Janus Battled libFuzzer and
Won (Alessandro Toppi)

Posted In: Guide. Leave a Comment

Tagged: fuzzing, janus,libfuzzer, 0SS-Fuzz, wireshark.

Thanks to work initiated by Google Project Zero, fuzzing has become a popular topic within
WeDRTC since late last year. It was clear WebRTC was lacking in this area. However, the
community has shown its strength by giving this topic an immense amount of focus and
resolving many issues. In a previous post, we showed how to break the Janus Server RTCP
parser. The Meetecho team behind Janus did not take that lightly. They got to the bottom of
what turned out to be quite a big project. In this post Alessandro Toppi of Meetecho will walk us
through how they fixed this problem and built an automated process to help make sure it

SEARCH

New PosTt
NOTIFICATIONS

Emall Address

First Name.

LastName

https://webrtchacks.com/fuzzing-janus/

https://webrtchacks.com/fuzzing-janus/

r_\r.
M What's next? KAMAILIOWORLD
M <

e So far, we only fuzzed RTP, RTCP and in part SDP in the core
e SDP fuzzing should be improved (maybe with structure-aware fuzzing?)
e Fuzzing signalling might be nice, but so many transports!
e What about plugins and their custom interactions?

R s e KAMAILIOWORLD
M \../

e So far, we only fuzzed RTP, RTCP and in part SDP in the core

e SDP fuzzing should be improved (maybe with structure-aware fuzzing?)
e Fuzzing signalling might be nice, but so many transports!
e What about plugins and their custom interactions?

 Definitely expand the corpora

e The shared RTC-Cartel repo should help with that
o Let’s see if what crashed you crashed us too, and viceversa!

R s e KAMAILIOWORLD
M \../

e So far, we only fuzzed RTP, RTCP and in part SDP in the core

e SDP fuzzing should be improved (maybe with structure-aware fuzzing?)
e Fuzzing signalling might be nice, but so many transports!
e What about plugins and their custom interactions?

 Definitely expand the corpora

e The shared RTC-Cartel repo should help with that
o Let’s see if what crashed you crashed us too, and viceversa!

e libFuzzer is not the only option here

e Henning and Sandro introduced AFL, Radamsa, Gasoline and others last year
o KITE and its “weaponised” browsers can be very helpful as an orthogonal testing tool

. . . (‘\\
M Thanks! Questions? Comments? KAMAILIOWORLD
_/

Get in touch!
e W hitps://twitter.com/elminiero
e W hitps:/twitter.com/meetecho
€ http://www.meetecho.com

https://twitter.com/elminiero
https://twitter.com/meetecho
http://www.meetecho.com

.M. See you soon in Napoli! KAMAILIOWORLD
Jonuscon A
NAPlOIL!
Hoonogogan
Oﬁlzed by: g j—lai . m?ﬁ
Sponsored by: |

=

Www.januscon, it
FOR MORE INFO, CFP

SPONSORSHIP OPPORTU
janusoon@meetecho.ooﬁafi/j?l W i3

=

September 23-25, 2019, Napoli — https://januscon.it

https://januscon.it

® 0 , , 7
[] See you soon in Napoli! KAMAILIOWORLD
_./

September 23-25, 2019, Napoli — https://januscon.it

https://januscon.it

