
What The Fuzz!
Or Why You Should Really

Fuzz Your RTC Code

Lorenzo Miniero
@elminiero

Kamailio World
May 7th 2019,

https://twitter.com/elminiero

A fuzzy intro

Lorenzo Miniero
• Ph.D @ UniNA
• Chairman @ Meetecho
• Barber shop avoider

Contacts and info
• lorenzo@meetecho.com
• https://twitter.com/elminiero
• https://www.slideshare.net/LorenzoMiniero

lorenzo@meetecho.com
https://twitter.com/elminiero
https://www.slideshare.net/LorenzoMiniero

Just a few words on Meetecho

• Co-founded in 2009 as an academic spin-off
• University research efforts brought to the market
• Completely independent from the University

• Focus on real-time multimedia applications
• Strong perspective on standardization and open source

• Several activities
• Consulting services
• Commercial support and Janus licenses
• Streaming of live events (IETF, ACM, etc.)

• Proudly brewed in sunny Napoli(*), Italy

((*)You may have heard of it)

Kudos to Alessandro Toppi for this content!

Hot topic in Kamailio talks already!

https://www.youtube.com/watch?v=bhy7-uxZGqk

https://www.youtube.com/watch?v=bhy7-uxZGqk

Kamailio lovers know fuzzing already

https://www.youtube.com/watch?v=CuxKD5zljVI

https://www.youtube.com/watch?v=CuxKD5zljVI

Why another talk on fuzzing, then?

• Project Zero is a team of security analysts employed by Google
• https://googleprojectzero.blogspot.com/

• Recently focused on videoconferencing applications
• Focus on end-to-end, and RTP testing
• Malicious endpoint generating randomized input
• Built new tools required for the task

• Targeted many applications, and found dangerous bugs
• Apple FaceTime
• WhatsApp
• WebRTC (yikes!)

Philipp Hancke’s wakeup call (crashing Janus of all things!)

https://webrtchacks.com/lets-get-better-at-fuzzing-in-2019-heres-how/

https://googleprojectzero.blogspot.com/
https://webrtchacks.com/lets-get-better-at-fuzzing-in-2019-heres-how/

Why another talk on fuzzing, then?

• Project Zero is a team of security analysts employed by Google
• https://googleprojectzero.blogspot.com/

• Recently focused on videoconferencing applications
• Focus on end-to-end, and RTP testing
• Malicious endpoint generating randomized input
• Built new tools required for the task

• Targeted many applications, and found dangerous bugs
• Apple FaceTime
• WhatsApp
• WebRTC (yikes!)

Philipp Hancke’s wakeup call (crashing Janus of all things!)

https://webrtchacks.com/lets-get-better-at-fuzzing-in-2019-heres-how/

https://googleprojectzero.blogspot.com/
https://webrtchacks.com/lets-get-better-at-fuzzing-in-2019-heres-how/

Why another talk on fuzzing, then?

• Project Zero is a team of security analysts employed by Google
• https://googleprojectzero.blogspot.com/

• Recently focused on videoconferencing applications
• Focus on end-to-end, and RTP testing
• Malicious endpoint generating randomized input
• Built new tools required for the task

• Targeted many applications, and found dangerous bugs
• Apple FaceTime
• WhatsApp
• WebRTC (yikes!)

Philipp Hancke’s wakeup call (crashing Janus of all things!)

https://webrtchacks.com/lets-get-better-at-fuzzing-in-2019-heres-how/

https://googleprojectzero.blogspot.com/
https://webrtchacks.com/lets-get-better-at-fuzzing-in-2019-heres-how/

Why another talk on fuzzing, then?

• Project Zero is a team of security analysts employed by Google
• https://googleprojectzero.blogspot.com/

• Recently focused on videoconferencing applications
• Focus on end-to-end, and RTP testing
• Malicious endpoint generating randomized input
• Built new tools required for the task

• Targeted many applications, and found dangerous bugs
• Apple FaceTime
• WhatsApp
• WebRTC (yikes!)

Philipp Hancke’s wakeup call (crashing Janus of all things!)

https://webrtchacks.com/lets-get-better-at-fuzzing-in-2019-heres-how/

https://googleprojectzero.blogspot.com/
https://webrtchacks.com/lets-get-better-at-fuzzing-in-2019-heres-how/

Project Zero scaring the fuzz out of us

• In Kamailio, focus is on SIP/SDP signalling, of course
• Media often taken care of in other components

• WebRTC is signalling agnostic, though
• You can use SIP, or XMPP, or some JSON flavour, or [INSERT_PROTOCOL]

• A lot of media-related protocols to worry about instead!
• STUN/TURN (NAT traversal)
• DTLS/DTLS-SRTP (secure exchange of keys and data)
• RTP/RTCP (or actually, SRTP/SRTCP), including RTP extensions
• SCTP (data channels)

• ... and codec specific payloads!
• Identifying keyframes (VP8, VP9, H.264)
• VP8 simulcast (VP8 payload descriptor)
• VP9 SVC (VP9 payload descriptor)

Project Zero scaring the fuzz out of us

• In Kamailio, focus is on SIP/SDP signalling, of course
• Media often taken care of in other components

• WebRTC is signalling agnostic, though
• You can use SIP, or XMPP, or some JSON flavour, or [INSERT_PROTOCOL]

• A lot of media-related protocols to worry about instead!
• STUN/TURN (NAT traversal)
• DTLS/DTLS-SRTP (secure exchange of keys and data)
• RTP/RTCP (or actually, SRTP/SRTCP), including RTP extensions
• SCTP (data channels)

• ... and codec specific payloads!
• Identifying keyframes (VP8, VP9, H.264)
• VP8 simulcast (VP8 payload descriptor)
• VP9 SVC (VP9 payload descriptor)

Project Zero scaring the fuzz out of us

• In Kamailio, focus is on SIP/SDP signalling, of course
• Media often taken care of in other components

• WebRTC is signalling agnostic, though
• You can use SIP, or XMPP, or some JSON flavour, or [INSERT_PROTOCOL]

• A lot of media-related protocols to worry about instead!
• STUN/TURN (NAT traversal)
• DTLS/DTLS-SRTP (secure exchange of keys and data)
• RTP/RTCP (or actually, SRTP/SRTCP), including RTP extensions
• SCTP (data channels)

• ... and codec specific payloads!
• Identifying keyframes (VP8, VP9, H.264)
• VP8 simulcast (VP8 payload descriptor)
• VP9 SVC (VP9 payload descriptor)

Project Zero scaring the fuzz out of us

• In Kamailio, focus is on SIP/SDP signalling, of course
• Media often taken care of in other components

• WebRTC is signalling agnostic, though
• You can use SIP, or XMPP, or some JSON flavour, or [INSERT_PROTOCOL]

• A lot of media-related protocols to worry about instead!
• STUN/TURN (NAT traversal)
• DTLS/DTLS-SRTP (secure exchange of keys and data)
• RTP/RTCP (or actually, SRTP/SRTCP), including RTP extensions
• SCTP (data channels)

• ... and codec specific payloads!
• Identifying keyframes (VP8, VP9, H.264)
• VP8 simulcast (VP8 payload descriptor)
• VP9 SVC (VP9 payload descriptor)

Ok, we’re scared now... what is fuzz testing?

• Automated software testing technique
• Unexpected or invalid data submitted to a program
• Input pattern modified according to a defined strategy (e.g., for coverage)

• Typical workflow

1 Engine generates input
2 Pattern mutated depending on existing dataset (“Corpus”)
3 Input data passed to target function and monitored (e.g., via sanitizers)
4 Coverage of new lines updates stats and Corpus (new pattern)
5 Repeat until it crashes!

• Repeatability can be ensured using the same seeds or previous dumps

Ok, we’re scared now... what is fuzz testing?

• Automated software testing technique
• Unexpected or invalid data submitted to a program
• Input pattern modified according to a defined strategy (e.g., for coverage)

• Typical workflow

1 Engine generates input
2 Pattern mutated depending on existing dataset (“Corpus”)
3 Input data passed to target function and monitored (e.g., via sanitizers)
4 Coverage of new lines updates stats and Corpus (new pattern)
5 Repeat until it crashes!

• Repeatability can be ensured using the same seeds or previous dumps

Ok, we’re scared now... what is fuzz testing?

• Automated software testing technique
• Unexpected or invalid data submitted to a program
• Input pattern modified according to a defined strategy (e.g., for coverage)

• Typical workflow

1 Engine generates input
2 Pattern mutated depending on existing dataset (“Corpus”)
3 Input data passed to target function and monitored (e.g., via sanitizers)
4 Coverage of new lines updates stats and Corpus (new pattern)
5 Repeat until it crashes!

• Repeatability can be ensured using the same seeds or previous dumps

Enter Janus!

Janus
General purpose, open source WebRTC server

• https://github.com/meetecho/janus-gateway
• Demos and documentation: https://janus.conf.meetecho.com
• Community: https://groups.google.com/forum/#!forum/meetecho-janus

https://github.com/meetecho/janus-gateway
https://janus.conf.meetecho.com
https://groups.google.com/forum/#!forum/meetecho-janus

Modular architecture

• The core only implements the WebRTC stack
• JSEP/SDP, ICE, DTLS-SRTP, Data Channels, Simulcast, VP9-SVC, ...

• Plugins expose Janus API over different “transports”
• Currently HTTP / WebSockets / RabbitMQ / Unix Sockets / MQTT / Nanomsg

• “Application” logic implemented in plugins too
• Users attach to plugins via the Janus core
• The core handles the WebRTC stuff
• Plugins route/manipulate the media/data

• Plugins can be combined on client side as “bricks”
• Video SFU, Audio MCU, SIP gatewaying, broadcasting, etc.

Modular architecture

• The core only implements the WebRTC stack
• JSEP/SDP, ICE, DTLS-SRTP, Data Channels, Simulcast, VP9-SVC, ...

• Plugins expose Janus API over different “transports”
• Currently HTTP / WebSockets / RabbitMQ / Unix Sockets / MQTT / Nanomsg

• “Application” logic implemented in plugins too
• Users attach to plugins via the Janus core
• The core handles the WebRTC stuff
• Plugins route/manipulate the media/data

• Plugins can be combined on client side as “bricks”
• Video SFU, Audio MCU, SIP gatewaying, broadcasting, etc.

Modular architecture

• The core only implements the WebRTC stack
• JSEP/SDP, ICE, DTLS-SRTP, Data Channels, Simulcast, VP9-SVC, ...

• Plugins expose Janus API over different “transports”
• Currently HTTP / WebSockets / RabbitMQ / Unix Sockets / MQTT / Nanomsg

• “Application” logic implemented in plugins too
• Users attach to plugins via the Janus core
• The core handles the WebRTC stuff
• Plugins route/manipulate the media/data

• Plugins can be combined on client side as “bricks”
• Video SFU, Audio MCU, SIP gatewaying, broadcasting, etc.

Modular architecture

• The core only implements the WebRTC stack
• JSEP/SDP, ICE, DTLS-SRTP, Data Channels, Simulcast, VP9-SVC, ...

• Plugins expose Janus API over different “transports”
• Currently HTTP / WebSockets / RabbitMQ / Unix Sockets / MQTT / Nanomsg

• “Application” logic implemented in plugins too
• Users attach to plugins via the Janus core
• The core handles the WebRTC stuff
• Plugins route/manipulate the media/data

• Plugins can be combined on client side as “bricks”
• Video SFU, Audio MCU, SIP gatewaying, broadcasting, etc.

What should we fuzz, here?

• Many protocols via dependencies are fuzzed already
• ICE/STUN/TURN (libnice)
• DTLS/DTLS-SRTP (OpenSSL/LibreSSL/BoringSSL)
• SRTP/SRTCP (libsrtp)
• SCTP (usrsctplib)

• Some other dependencies MAY need fuzzing (but not in Janus?)
• Transports (HTTP, WebSockets, RabbitMQ, etc.)
• JSON support (Jansson)

• Others were done by us, so DEFINITELY need fuzzing ,
• RTCP parsing (e.g., compound packets)
• RTP processing (e.g., RTP extensions, codec specific payloads)
• SDP parsing and processing

What should we fuzz, here?

• Many protocols via dependencies are fuzzed already
• ICE/STUN/TURN (libnice)
• DTLS/DTLS-SRTP (OpenSSL/LibreSSL/BoringSSL)
• SRTP/SRTCP (libsrtp)
• SCTP (usrsctplib)

• Some other dependencies MAY need fuzzing (but not in Janus?)
• Transports (HTTP, WebSockets, RabbitMQ, etc.)
• JSON support (Jansson)

• Others were done by us, so DEFINITELY need fuzzing ,
• RTCP parsing (e.g., compound packets)
• RTP processing (e.g., RTP extensions, codec specific payloads)
• SDP parsing and processing

What should we fuzz, here?

• Many protocols via dependencies are fuzzed already
• ICE/STUN/TURN (libnice)
• DTLS/DTLS-SRTP (OpenSSL/LibreSSL/BoringSSL)
• SRTP/SRTCP (libsrtp)
• SCTP (usrsctplib)

• Some other dependencies MAY need fuzzing (but not in Janus?)
• Transports (HTTP, WebSockets, RabbitMQ, etc.)
• JSON support (Jansson)

• Others were done by us, so DEFINITELY need fuzzing ,
• RTCP parsing (e.g., compound packets)
• RTP processing (e.g., RTP extensions, codec specific payloads)
• SDP parsing and processing

A quick intro to libFuzzer

• Popular coverage-guided fuzzing engine, part of the LLVM project
• https://llvm.org/docs/LibFuzzer.html

• Used by several well known applications
• glibc, OpenSSL/LibreSSL/BoringSSL, SQLite, FFmpeg and many more
• Made sense for us to have a look at it too!

• A few key characteristics
• Needs sources to be compiled with Clang
• Works in-process (linked with the library/application under test)
• Feeds inputs to the target via a fuzzing entrypoint (target function)
• Execution of the target function is monitored with sanitizers tools (e.g., libasan)

https://llvm.org/docs/LibFuzzer.html

A quick intro to libFuzzer

• Popular coverage-guided fuzzing engine, part of the LLVM project
• https://llvm.org/docs/LibFuzzer.html

• Used by several well known applications
• glibc, OpenSSL/LibreSSL/BoringSSL, SQLite, FFmpeg and many more
• Made sense for us to have a look at it too!

• A few key characteristics
• Needs sources to be compiled with Clang
• Works in-process (linked with the library/application under test)
• Feeds inputs to the target via a fuzzing entrypoint (target function)
• Execution of the target function is monitored with sanitizers tools (e.g., libasan)

https://llvm.org/docs/LibFuzzer.html

A quick intro to libFuzzer

• Popular coverage-guided fuzzing engine, part of the LLVM project
• https://llvm.org/docs/LibFuzzer.html

• Used by several well known applications
• glibc, OpenSSL/LibreSSL/BoringSSL, SQLite, FFmpeg and many more
• Made sense for us to have a look at it too!

• A few key characteristics
• Needs sources to be compiled with Clang
• Works in-process (linked with the library/application under test)
• Feeds inputs to the target via a fuzzing entrypoint (target function)
• Execution of the target function is monitored with sanitizers tools (e.g., libasan)

https://llvm.org/docs/LibFuzzer.html

Wait, “coverage-guided fuzzing”?

libFuzzer in (simplified) practice

1 Implement the method to receive and process the input data

// my_fuzzer.c
int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {

ProcessData(Data, Size);
return 0;

}

2 Compile with Clang and the right flags

> clang -g -O1 -fsanitize=fuzzer,address,undefined my_fuzzer.c

3 Launch passing the Corpus folder as the argument

> ./my_fuzzer CORPUS_DIR

4 In case of crashes, pass the dumped input! (e.g., via gdb, or to test regressions)

> gdb --args ./my_fuzzer crash-file-dump

libFuzzer in (simplified) practice

1 Implement the method to receive and process the input data

// my_fuzzer.c
int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {

ProcessData(Data, Size);
return 0;

}

2 Compile with Clang and the right flags

> clang -g -O1 -fsanitize=fuzzer,address,undefined my_fuzzer.c

3 Launch passing the Corpus folder as the argument

> ./my_fuzzer CORPUS_DIR

4 In case of crashes, pass the dumped input! (e.g., via gdb, or to test regressions)

> gdb --args ./my_fuzzer crash-file-dump

libFuzzer in (simplified) practice

1 Implement the method to receive and process the input data

// my_fuzzer.c
int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {

ProcessData(Data, Size);
return 0;

}

2 Compile with Clang and the right flags

> clang -g -O1 -fsanitize=fuzzer,address,undefined my_fuzzer.c

3 Launch passing the Corpus folder as the argument

> ./my_fuzzer CORPUS_DIR

4 In case of crashes, pass the dumped input! (e.g., via gdb, or to test regressions)

> gdb --args ./my_fuzzer crash-file-dump

libFuzzer in (simplified) practice

1 Implement the method to receive and process the input data

// my_fuzzer.c
int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {

ProcessData(Data, Size);
return 0;

}

2 Compile with Clang and the right flags

> clang -g -O1 -fsanitize=fuzzer,address,undefined my_fuzzer.c

3 Launch passing the Corpus folder as the argument

> ./my_fuzzer CORPUS_DIR

4 In case of crashes, pass the dumped input! (e.g., via gdb, or to test regressions)

> gdb --args ./my_fuzzer crash-file-dump

Integrating libFuzzer in Janus

• First step was Clang support (Janus normally built with gcc)
• Streamlined compilation flags in the process
• Got useful warnings that led to some fixes too!

• Next step was choosing what to fuzz
• Decided to start with RTCP
• Compound packets + length values + overflows = “fun”!

• Then worked on the libFuzzer workflow
1 Fuzzing target with critical RTCP-related functions
2 Helper script to build the fuzzer
3 Helper script to run the fuzzer

Original pull request (now merged, with RTP and SDP fuzzing as well)

https://github.com/meetecho/janus-gateway/pull/1492

https://github.com/meetecho/janus-gateway/pull/1492

Integrating libFuzzer in Janus

• First step was Clang support (Janus normally built with gcc)
• Streamlined compilation flags in the process
• Got useful warnings that led to some fixes too!

• Next step was choosing what to fuzz
• Decided to start with RTCP
• Compound packets + length values + overflows = “fun”!

• Then worked on the libFuzzer workflow
1 Fuzzing target with critical RTCP-related functions
2 Helper script to build the fuzzer
3 Helper script to run the fuzzer

Original pull request (now merged, with RTP and SDP fuzzing as well)

https://github.com/meetecho/janus-gateway/pull/1492

https://github.com/meetecho/janus-gateway/pull/1492

Integrating libFuzzer in Janus

• First step was Clang support (Janus normally built with gcc)
• Streamlined compilation flags in the process
• Got useful warnings that led to some fixes too!

• Next step was choosing what to fuzz
• Decided to start with RTCP
• Compound packets + length values + overflows = “fun”!

• Then worked on the libFuzzer workflow
1 Fuzzing target with critical RTCP-related functions
2 Helper script to build the fuzzer
3 Helper script to run the fuzzer

Original pull request (now merged, with RTP and SDP fuzzing as well)

https://github.com/meetecho/janus-gateway/pull/1492

https://github.com/meetecho/janus-gateway/pull/1492

Integrating libFuzzer in Janus

• First step was Clang support (Janus normally built with gcc)
• Streamlined compilation flags in the process
• Got useful warnings that led to some fixes too!

• Next step was choosing what to fuzz
• Decided to start with RTCP
• Compound packets + length values + overflows = “fun”!

• Then worked on the libFuzzer workflow
1 Fuzzing target with critical RTCP-related functions
2 Helper script to build the fuzzer
3 Helper script to run the fuzzer

Original pull request (now merged, with RTP and SDP fuzzing as well)

https://github.com/meetecho/janus-gateway/pull/1492

https://github.com/meetecho/janus-gateway/pull/1492

Integrating libFuzzer in Janus

// fuzz-rtcp.c
#include "janus/rtcp.h"
int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {

if (size < 8 || size > 1472)
return 0;

if (!janus_is_rtcp(data, size))
return 0;

/* Initialize an empty RTCP context */
janus_rtcp_context ctx;
janus_rtcp_parse(ctx, (char *)data, size);
GSList *list = janus_rtcp_get_nacks((char *)data, size);
...
if (list)

g_slist_free(list);
return 0;

}

Presenting the code coverage

Corpora files: a shared effort!

https://github.com/RTC-Cartel/webrtc-fuzzer-corpora (thx, Iñaki!)

https://github.com/RTC-Cartel/webrtc-fuzzer-corpora

Scalable distributed fuzzing via OSS-Fuzz

https://github.com/google/oss-fuzz/pull/2241 (Janus is in, yay!)

https://github.com/google/oss-fuzz/pull/2241

Scalable distributed fuzzing via OSS-Fuzz

https://github.com/google/oss-fuzz/pull/2241 (Janus is in, yay!)

https://github.com/google/oss-fuzz/pull/2241

A detailed tutorial on how to setup all this!

https://webrtchacks.com/fuzzing-janus/

https://webrtchacks.com/fuzzing-janus/

What’s next?

• So far, we only fuzzed RTP, RTCP and in part SDP in the core
• SDP fuzzing should be improved (maybe with structure-aware fuzzing?)
• Fuzzing signalling might be nice, but so many transports!
• What about plugins and their custom interactions?

• Definitely expand the corpora
• The shared RTC-Cartel repo should help with that
• Let’s see if what crashed you crashed us too, and viceversa!

• libFuzzer is not the only option here
• Henning and Sandro introduced AFL, Radamsa, Gasoline and others last year
• KITE and its “weaponised” browsers can be very helpful as an orthogonal testing tool

What’s next?

• So far, we only fuzzed RTP, RTCP and in part SDP in the core
• SDP fuzzing should be improved (maybe with structure-aware fuzzing?)
• Fuzzing signalling might be nice, but so many transports!
• What about plugins and their custom interactions?

• Definitely expand the corpora
• The shared RTC-Cartel repo should help with that
• Let’s see if what crashed you crashed us too, and viceversa!

• libFuzzer is not the only option here
• Henning and Sandro introduced AFL, Radamsa, Gasoline and others last year
• KITE and its “weaponised” browsers can be very helpful as an orthogonal testing tool

What’s next?

• So far, we only fuzzed RTP, RTCP and in part SDP in the core
• SDP fuzzing should be improved (maybe with structure-aware fuzzing?)
• Fuzzing signalling might be nice, but so many transports!
• What about plugins and their custom interactions?

• Definitely expand the corpora
• The shared RTC-Cartel repo should help with that
• Let’s see if what crashed you crashed us too, and viceversa!

• libFuzzer is not the only option here
• Henning and Sandro introduced AFL, Radamsa, Gasoline and others last year
• KITE and its “weaponised” browsers can be very helpful as an orthogonal testing tool

Thanks! Questions? Comments?

Get in touch!
• https://twitter.com/elminiero
• https://twitter.com/meetecho
• http://www.meetecho.com

https://twitter.com/elminiero
https://twitter.com/meetecho
http://www.meetecho.com

See you soon in Napoli!

September 23-25, 2019, Napoli — https://januscon.it

https://januscon.it

See you soon in Napoli!

September 23-25, 2019, Napoli — https://januscon.it

https://januscon.it

