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SIP / User Datagram Protocol (UDP)

● Fast and simple (best effort)

● Application level: atomic reads/writes on the sockets

● High throughput at a cost: congestion

● Congestion: infrastructure cannot support the amount of traffic; two types: 
application congestion / network congestion

● No explicit congestion control & avoidance mechanism in SIP/UDP; 
application has to take care of it



SIP / User Datagram Protocol (UDP) – cont.

● Application congestion in an Active/Stand-by failover 

● traffic rate during failover is close to the engineered cps

● newly active server is experiencing congestion for several 
seconds due to retransmission spikes



SIP / Transmission Control Protocol (TCP)

● TCP offers a lot more than UDP: congestion control, 
retransmission, error control

● However TCP is a stream oriented protocol used for reliable 
transfer of chunks of data from host A to host B; TCP was not 
meant for real-time signalling

● Disadvantages for SIP: continous flow of data (no message 
boundaries), application layer synchronization/serialization of 
reads/writes, usually no fine grain configuration of internal 
timers



SIP / Stream Control Transmission Protocol (SCTP)

● SCTP is the Swiss army knife of transport protocols

● UDP-like features: message boundary preservation, unordered 
message delivery, one-to-many sockets at the application level.

● TCP-like features: positive (selective) acknowledgment, 
retransmission of lost data, windowed flow control, congestion 
control, one-to-one sockets at the application level



SIP / Stream Control Transmission Protocol (SCTP) – cont.

● SCTP unique features: 

● multihoming

● multiple streams per connection

● built-in heartbeats

● most of the protocol parameters configurable per system and per socket 
(association)

● exposes asynchronously its internal states/events to the application level through 
the use of notifications

● Useful for SIP: 

● message boundary preservation

● fine tuning of the timer values

● Multipath / transport layer failure detection per path

● asynchronous notifications of socket events



SIP / Stream Control Transmission Protocol (SCTP)  - cont.

● Pitfalls

● the SCTP socket API is a moving target still under development, 

● due to novelty, the level of complexity of some of the SCTP stack 
implementations is inversely proportional with the time spent on 
testing them

● sometimes their performance in terms of throughput is not on a 
par with the one offered by TCP.



UDP vs TCP vs SCTP

● Configuration:

● Hardware: Intel XEON, 16 way, 2.53 GHz, 24 GB memory (8 GB used by SER), Gb network 
cards

● SER / Linux CentOS

● The test bed is emulating proxy to proxy signalling

● small number of sip nodes, small number of tcp connections/sctp associations

● a lot of calls coming from/going to the same node

● SER is just routing the calls using prefix based routing (max. 30 prefixes)

● Tested call scenarios:

● Transaction replied by SER directly:  INVITE / 404

● End to end transaction:  INVITE / 100 / 180 / 200

● Call consists of:  INVITE / 100 / 180 / 200 / ACK / BYE / 200; it is 
both initiated and terminated by UAC, ringing time: 12s, call 
duration: 120s in average  (35s – 205s)



UDP vs TCP vs SCTP – cont.

● Max throughput: UDP, directly replied transaction: 27K 
tps

● Calls on UDP (using raw sockets for send): 8K cps; 
active-standby failover produces much higher spikes 
(around 20K)

● Calls on TCP: 10K cps

● Calls on SCTP: 2.5K cps; most reliable active-standby 
failover (no call loss)



UDP vs TCP vs SCTP – issues

● Timer process congestion

● there are: multiple udp/tcp/sctp processes, only two timer processes

● at high call rate the timer processes cannot cope with all the events 
generated by traffic processed in the udp/tcp/sctp processes

● SCTP relatively poor throughput

● Linux kernel issue

● One-to-many sockets do not scale properly with the number of 
readers/writers (synchronization bottleneck)

● Active/standby failover with TCP

● Depends on how quickly the peers detect the failure and reconnect

● Worse than SCTP


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

