

WebRTC Signaling

 In a few words...

▪ We’re all about interconnection and security in UC
▪ Strong expertise on WebRTC technology
▪ Founded in 2006, privately held, no VCs
▪ Markets: telco and enterprise UC solutions
▪ HQ in Spain, worldwide sales
▪ Recent awards:

 About WebRTC & Quobis

Co-authoring (Víctor Pascual) the RFC7118 standard for SIP
over Websockets, SIPoWS

Quobis plays a key-role in WebRTC industry, as is running 35+ PoCs in
Tier1-2 telcos in EMEA, LATAM, US and APAC.

Authors of QoffeeSIP, an opensource Javascript SIPoWS
implementing RFC7118

Quobis’ is co-chairing the SIP Forum WebRTC Task Group,
whose objective is to enable deployment of WebRTC for
SIP-based domains

Quobis is member of the ATIS DSI initative, which is
leading the ORCA.js opensource project

http://tools.ietf.org/html/rfc7118
http://qoffeesip.quobis.com/
http://www.sipforum.org/content/view/415/293/
http://www.atis.org/dsi/
http://www.orcajs.org/index.html

Signaling in WebRTC

We are running around 30 PoCs.

We used + to
implement our demo platform.

...but we also have to work with vendor
solutions.

We are learning valuable lessons from
them.

Signaling in WebRTC

W3C does not define the Signaling to use for
WebRTC applications

Many signaling protocols have been
adopted by developers and vendors

Signaling in WebRTC

XMPP over Websocket: Jingle over WS
libraries, it also is used in Open Source solutions.

SIP over Websocket: VoIP friendly, trickle ICE no
direct to implement but doable, adopted by the main
VoIP Open Source solutions.

Standard-based and adopted by Open Source
community

Signaling in WebRTC

JSONoWS: Web developer friendly, easy to
implement trickle ICE, flexible (you have to invent
everything)

Over Datachannel: used for in-dialog
signaling, less latency

REST API + (Websocket || Long-polling) for
events: Web developer friendly, massively
used in web environments.

Proprietary/non-standard solutions adopted
by vendors or specific developments.

Signaling in WebRTC

1. One application developed for a specific signaling
does not work for a different one.

3. Signaling stacks offer a different API but
they do similar things using different ways.

Drawbacks of signaling atomization

2. Web Developers should not
care about the signaling used by
the server/Gateway.

Signaling in WebRTC

Any solution?

A standard API for WebRTC Apps

covering standard use cases

orca.js

The idea is to provide a common API for Web
Developers.

Each vendor can provide an orca.js compatible
JS library.

SIPoWS stacks can offer orca.js compatible
APIs

Signaling Stack

W3C API
management

WebRTC
GW/Signaling

Server

orca.js

You can check the code at:
 https://github.com/orcajs/orca.js

session = createSession(userid, token, sessionConfig);
session.connect();
session.on(incomingcall,handle_incomingcall);
call = session.createCall(callee, video);
call.connect();
call.hold();
call.resume();
call.disconnect();

How it looks?:

https://github.com/orcajs/orca.js

 Example of app using orca.js compatible API

SIPPO GMAIL CONNECTOR

Click to call example

CLICK TO CALL
Click-to-call integration with IM and contextual information

 Some apps we are developing

CLICK TO CALL CONSIDERATIONS

The user is anonymous but we need to gather interesting
contextual information to offer to the agent answering
the call and for further BI analysis.

Open to DoS attacks. Click to call applications are likely to

suffer DoS and even fraud attacks. It is important to
mitigate this by avoiding too many simultaneous or consecutive
calls from same IP/port.

You must limit the whole number of calls your customer
can handle. This allows to minimizes the impact of DDoS
attacks and also to collapse the call center with legitimate
traffic.

 Some apps we are developing

CLICK TO CALL CONSIDERATIONS

This scenario can be implemented with
Kamailio + Solution to handle media.

Contextual info can be easily transported by
modifying a SIP over Websocket stack to send
custom headers (use WSS for this, please).
e.g. Geolocation (we can include the info
provided by W3C geolocation API), origin
url, etc.

We can get source IP and port in Kamailio
for CDRs and to implement DoS protections.

We can store all this information in the CDRs
directly using Kamailio.

INVITE agent@customer1.quobis.com
…

Geolocation: 52.52076229+13.40186559
Url: demo.quobis.com/c2c

...

 Sippo WebRTC Application Controller

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

