
 KWC 2018 - Berlin

 Kamailio with Docker and
Kubernetes

Scale in the right way

about me...

My name is Paolo Visintin

I’m passionate about telecommunications and technology, I design, develop and maintain
VoIP platforms based on Kamailio and Asterisk

I’m the CTO of an Italian telco operator providing internet and voice services in the Country

I decided to start a new project named evosip, a cloud PaaS VoIP infrastructure built on
kubernetes

You can follow me:

https://www.linkedin.com/in/paolo-visintin-cloudvoip/

http://evosip.cloud/

https://www.linkedin.com/in/paolo-visintin-cloudvoip/
http://evosip.cloud/

Agenda

In this speech I’d like to tell you how we created a platform that:

 …a platform we named evosip!

● scales with no limits
● scales fast and automatically
● is distributed
● is QoE oriented
● has no vendor lock-in
● achieve business continuity

evosip diagram

● Kamailio proxy and “routing” layer

● Asterisk as TPS

● RTPEngine

● Custom API SIP orchestration

evosip … from the beginning

We were looking for a platform able to :

● create instances in a very fast way (couple of seconds)
● orchestrate instances between layers
● orchestrate network and policies
● works in a distributed environment

Using Docker for instance deployment and Kubernetes for orchestration (container,
network and policies) we found an optimal stack to start this adventure and create a really
fast and mutational SIP ecosystem based on Kamailio, Asterisk and RTPEngine

So we started to use containerisation and saw it was really fast and useful

Containers … avoid network pain!

If you have used containers in a classical way probably you have noticed something terrible
about dealing with networking and SIP

This diagram shows the classical use of networking with docker

Containers … avoid network pain!

So how could you use SIP in containers without doing NAT / bridging and avoid network
issues and lack of performance ?

Differences between bridge networking and [mac/ip]vlan networking

…with macvlan !

Thanks to macvlan every instance can have a direct public IP address with its own mac
address

It uses less CPU and provides better throughput (almost like the physical interface)

Containers … avoid network pain (with macvlan)!

macvlan associate to Linux Ethernet interface or sub-interface

We also decided to separate

● data network (DB / API / etc)
● core service network (SIP / RTP)

But … if you know kubernetes, you also know that a POD (a group of one or more containers
with shared storage/network) by default provides a single network interface

Containers with multiple networks

with multus (https://github.com/Intel-Corp/multus-cni - a CNI plugin) you are able to do it!

Containers with multiple network

https://github.com/Intel-Corp/multus-cni

Containers with multiple network

Containerized services work and scale better
with stateless applications

Then, how to make kamailio ASAP ?

Kamailio ASAP (As Stateless As Possible)

We will now focus on :

● dispatcher

● authentication

● user location

● dialogs

We use the dispatcher module to route request from proxy layer to router layer (both are
kamailio auto-scalable instances)

As of the possibility of reloading the dispatcher module (e.g. autoscaling of routers) once used
ds_select_dst we store the $du and callerid ($ci) in a hash table in order to re-use $du on
the next request and maintain the path to the same endpoint for the call

We disabled the keepalive option in dispatcher to avoid pinging endpoints

We set instead short timers to handle failure_route in case of tear-down on unreachability of
endpoints

Kamailio ASAP - cached dispatchers

Kamailio ASAP - cached dispatchers

if ($sht(hDispatcherTps=>$ci)==$null) {
 # select tps from dispacher
 ds_select_dst("1","0");
 $sht(hDispatcherTps=>$ci) = $du;
 } else {
 $du = $sht(hDispatcherTps=>$ci);
 }

Kamailio ASAP - cached dispatchers

if ($sht(hDispatcherTps=>$ci)==$null) {
 # select tps from dispacher
 ds_select_dst("1","0");
 $sht(hDispatcherTps=>$ci) = $du;
 } else {
 $du = $sht(hDispatcherTps=>$ci);
 }

How we implemented authentication in kamailio ?

Kamailio ASAP - Auth module

● we call API to retrieve user profile and store it in htable

● we use pv_auth_check method to deal with authentication

● Orchestrator calls via RPC kamailio if profile changes and need to be reloaded / updated

Caching authentication in this way improves performance and optimize API calls

How we implemented authentication in kamailio ?

Kamailio ASAP - Auth module

route[AUTHCACHE] {
if($au && $sht(auth=>$au::passwd)==$null) {

 # get password from API
 ...
 $var(graphql_query) = "{\"query\": \"{ kamailio
{ subscriber { auth(username:\\\"" + $au + "\\\") {
username\\n secret } } } } \"}";
 $http_req(body) = $var(graphql_query);
 http_async_query(API_QUERY_URL, "SET_PASSWD");

...

 }

How we implemented authentication in kamailio ?

Kamailio ASAP - Auth module

route[SET_PASSWD] {
 if ($http_ok && $http_rs == 200) {
 xlog("L_INFO", "route[SET_PASSWD]: response
$http_rb)\n");

jansson_get("data.kamailio.subscriber.auth.username",
$http_rb, "$var(username)");

jansson_get("data.kamailio.subscriber.auth.secret",
$http_rb, "$var(secret)");
 xlog("L_INFO", "route[SET_PASSWD]: setting
password >>>$var(secret)<<< for user
>>>$var(username)<<< in shared table\n");
 $sht(auth=>$var(username)::passwd) =
$var(secret);
 } else {
 xlog("L_INFO", "route[HTTP_REPLY]: error
$http_err)\n");
 }
}

How we implemented authentication in kamailio ?

Kamailio ASAP - Auth module

 $var(user_passwd) = $sht(auth=>$au::passwd);
 if(!pv_auth_check("$fd", "$var(user_passwd)",
"0", "1")) {
 auth_challenge("$fd", "1");
 exit;
 }#end if
} # end route[AUTH_ACCOUNT]

We save in memory and share user locations using DMQ

Kamailio ASAP - Usrloc module

Router instance
…
loadmodule "dmq.so"
loadmodule "usrloc.so"
loadmodule "dmq_usrloc.so"
#!define DMQ_SERVER_ADDRESS "sip:<pod-macvlan-ip>:5060"
#!define DMQ_NOTIFICATION_ADDRESS "sip:dmq-service:5060"
modparam("dmq_usrloc", "enable", 1)
modparam("dmq", "multi_notify", 1)
modparam("dmq", "num_workers", 4)

DMQ server
...
request_route {
 if(is_method("KDMQ")){
 dmq_handle_message();
 }
...

As of the stateless and mutational architecture we decided to use a containerized DMQ
server based on kamailio

We thought that having tons of dialogs replicated among router instances was not the
best way to achieve an unlimited scalable architecture

Kamailio ASAP - Dialogs

The best way to deal with dialogs in a distributed form for us is:

● every router instance deals with its own dialogs
● foreign dialogs are managed in case of tear-down or failover
● foreign dialogs have to be manager “on demand”

proxy

router 1

router 2

router 3

user call
user call

shared
dialog DB

dialog is saved in write-back mode from kamailio to DB

user call

a single dialog for specific callerid is
recovererd from DB

router 3

We needed to implement an intelligent and distributed sharing of dialogs in order to
work with a fast architecture mutation and failover-proof

Kamailio ASAP - Dialogs

...
if(has_totag()) {
 if(!is_known_dlg()) {

not a MINE dialog, let’s recover from DB
 dlg_db_load_callid("$ci");

....
 dlg_manage();

 }
}
...

Now kamailio has a new amazing method implemented in dialog module

dlg_db_load_callid(“$ci”)

(ref. https://github.com/kamailio/kamailio/issues/1512)

https://github.com/kamailio/kamailio/issues/1512

HA and balancing

edge

Possible solutions in a distributed architecture?

DNS

● Round-robin
● GeoIP
● short TTL

HA and balancing

edge

Possible solutions in a distributed architecture?

DNS

● Round-robin
● GeoIP
● short TTL

application / service caching !

Anycast IP

● using dynamic routing (OSPF)
○ proxy instances
○ border routers

HA and balancing (again in containers)

We use OSPF equal cost multipath and balance hashing per source / destination
packets (a session with specific client will maintain the path to the same proxy)

Reducing OSPF timeouts in “area 1” gave us the possibility to converge more quickly in
case of tear-down or failover

call

HA and balancing (again in containers)

We use OSPF equal cost multipath and balance hashing per source / destination
packets (a session with specific client will maintain the path to the same proxy)

Reducing OSPF timeouts in “area 1” gave us the possibility to converge more quickly in
case of tear-down or failover

call

HA and balancing (again in containers)

We decided to use FRRouting (https://frrouting.org/ a fork of the famous Quagga
project) both for core ospf router and for proxy instances that announce the anycast ip

https://frrouting.org/

HA and balancing (again in containers)
FRR configuration example

FRR CORE
...
interface net0
 description *** OSPF MacVLAN ***
 ip ospf dead-interval minimal hello-multiplier 5
router ospf
 default-information originate always
 passive-interface default
 no passive-interface net0
 no passive-interface eth0
 network <MACVLAN_NET>/<MACVLAN_SUB> area 1
 network <BACKBONE_NET>/<BACKBONE_SUB> area 0

 ip route 0.0.0.0/0 <DEFAULT_GW>

we set a short dead-interval to reach a fast
convergence in “area 1”

we define areas
- eth0 as backbone area 0
- net0 as proxy area 1

this router is the default gateway for proxy layer

HA and balancing (again in containers)
FRR configuration example

FRR PROXY
...
interface eth0
 description *** OSPF interface ***
 ip ospf area 1
 ip ospf dead-interval minimal hello-multiplier 5

router ospf
 redistribute static
 passive-interface default
 no passive-interface eth0

ip route <proxy.ip>/32 Null0
ip route 0.0.0.0/0 <FRR_COREIP>

we set a short dead-interval to reach a fast
convergence in “area 1”

we create the static route to Null0 to annunce the
anycast ip

Orchestrate !

And what about population of dispatchers and RTP nodes ?

We wrote a kubernetes controller to notify
events (create, update, delete) among the
pods

These notifications are sent to a "sidecar"
container which in turn updates the
dispatcher lists or dbtexts and call kamailio
through RPC to trigger a reload

Orchestrate !

event_route[xhttp:request] {
 ...
 if ($hu =~ "^/rpc") {
 xlog("L_NOTICE", "[XHTTP:REQUEST] $si ACCEPTED ***\n");
 jansson_get("method", "$rb", "$var(rpcMethod)");
 xlog("L_NOTICE", "[XHTTP:REQUEST] RPC METHOD: $var(rpcMethod) ***\n");

 if($var(rpcMethod) == "dispatcher.reload") {
 xlog("L_NOTICE", "Reloading dispatcher list\n");
 python_exec("updateDispatchers");
 CHECK_XHTTP_EXIT
 } else if($var(rpcMethod) == "rtpengine.reload") {
 xlog("L_NOTICE", "Reloading RTP list\n");
 python_exec("updateRTPs");
 CHECK_XHTTP_EXIT
 } else if($var(rpcMethod) == "permissions.addressReload") {
 xlog("L_NOTICE", "Reloading address list\n");
 } else if($var(rpcMethod) == "remove.dispatcher") {
 if($hdr(dispatcherIP) != "") {
 xlog("L_NOTICE","RPC Call: remove dispatcher: $hdr(dispatcherIP)\n");

Module reload in kamailio using xhttp

Application layer - stateless

We are using Asterisk as a stateless application

we use SIP headers to instruct asterisk what is the application with parameters to
execute

this makes evosip able to use multiple application services (asterisk, freeswitch, sems,
etc) without changing anything on kamailio side

router TPS

INVITE …
...
X-evosip-Action: Playback
X-evosip-Sound: mysoundfile
...

asterisk extensions.conf
[default]
exten => _X.,1,NoOP(:: dispatching requests ::)
exten => _X.,n, GotoIf($["${SIP_HEADER(X-evosip-Action)}" =
"Playback"]? playback)
exten => _X.,n,GotoIf($["${SIP_HEADER(X-evosip-Action)}" =
"Voicemail"]?voicemail)

Kamailio injects custom sip headers to
pilot the application layer and uses
dispatcher to balance requests among
TPS instances

Asterisk uses extensions modules and default context to dispatch requests
using GotoIf statement depending on the x-evosip-Action header

Application layer - stateless

We are using Asterisk as a stateless application

playback, transcoding, voicemail and other applications have its own portion of context

router TPS

INVITE …
...
X-evosip-Action: Playback
X-evosip-Sound: mysoundfile
...

asterisk extensions.conf
[default]
…
exten => _X.,n(playback),NoOp(*** Doing playback - ***)
;PATH of sound file
;${SIP_HEADER(X-evosip-SoundCustom)}${SIP_HEADER(X-evosip-SoundLocale)}
${SIP_HEADER(X-evosip-Sound)}
exten => _X.,n,SipRemoveHeader(X-evosip)
exten => _X.,n,Progress()
exten => _X.,n,Wait(1)
exten =>
_X.,n,Set(exists=${STAT(e,${ASTDATADIR}/sounds/${SIP_HEADER(X-evosip-So
undCustom)}/${SIP_HEADER(X-evosip-SoundLocale)}/${SIP_HEADER(X-evosip-S
ound)}.wav)})
exten => _X.,n,Playback(${IF($[${exists} = 1] ?
${SIP_HEADER(X-evosip-SoundCustom)}/${SIP_HEADER(X-evosip-SoundLocale)}
/${SIP_HEADER(X-evosip-Sound)},noanswer :
default/${SIP_HEADER(X-evosip-SoundLocale)}/${SIP_HEADER(X-evosip-Sound
)},noanswer)})
; exten => _X.,n,Playback(${SIP_HEADER(X-evosip-Option)},noanswer)
exten => _X.,n,Hangup()

Kamailio injects custom sip headers to
pilot the application layer and uses
dispatcher to balance requests among
TPS instances

Application layer - stateless

there is no sip trunk or peer, everything is profile-less (and uses the default context)

Connected to Asterisk 13.1.0~dfsg-1.1ubuntu4.1 currently running on tps-d768ccb6b-bnnlk (pid = 73)
tps-d768ccb6b-bnnlk*CLI> sip show peers
Name/username Host Dyn Forcerport Comedia ACL Port
Status Description
0 sip peers [Monitored: 0 online, 0 offline Unmonitored: 0 online, 0 offline]

SDP manipulations are made using context command “Set(SIP_CODEC)“

Media can be in cloud or on premise

We use RTPEngine to bridge RTP traffic

To enhance the QoE of voice / video services you are able to move closer to you this layer; less
latency, less network hops and full control of your media in your network!

In evosip rtpengine works in kubernetes using kernel module xt_RTPENGINE and scaling
automatically new instances (also on the same host)

Every node (that shares the same kernel in every container) loads at startup the xt_RTPENGINE
module and every instance, in bootstrap mode, uses the first free “table” on that node (and uses
IPTABLES inside the container to mark packets)

Media can be in cloud or on premise

example of rtp instance bootstrap bash script:

configure iptables fw

iptables -N rtpengine 2> /dev/null

iptables -D INPUT -j rtpengine 2> /dev/null

iptables -I INPUT -j rtpengine

iptables -D rtpengine -p udp -j RTPENGINE --id " $TABLE" 2>/dev/null

iptables -I rtpengine -p udp -j RTPENGINE --id " $TABLE"

Media can be in cloud or on premise

example of rtp instance bootstrap bash script:
cat << EOF > /etc/rtpengine/rtpengine.conf

[rtpengine]

table = $TABLE

interface = $POD_PUBLIC_IP

#interface=internal/$POD_PUBLIC_IP;external/$POD_PUBLIC_IP

... snip ...

EOF

run rtpengine

/usr/sbin/rtpengine --table=$TABLE --config-file=/etc/rtpengine/rtpengine.conf
--pidfile=/var/run/rtpengine.pid -E -f -F

/pod_scripts/disablePod.sh 99 "rtpengine crashed"

Recap

evosip is a startup project

ideas, contributions, partnership and knowledge sharing are really welcome !

What we focused on:

● scalability (auto)
● distribution
● QoE
● being ASAP (as stateless as possible)

Recap

evosip is a startup project

ideas, contributions, partnership and knowledge sharing are really welcome !

What will be in the next months:

● datacollect with ELK stack and Homer
● preemptive autoscaling with machine learning
● chaos engineering
● IPV6 protocol

Stay tuned !

 Do you like concepts and examples in this speech ?

subscribe and join evosip community @ http://evosip.cloud

Articles, news, interviews, podcast and videos of the project

for free implementing the knowledge sharing!

http://evosip.cloid

