SIP Introduction

Jan Janak

SIP Introduction
by Jan Janak

Copyright © 2003 FhG FOKUS

A brief overview of SIP describing all important aspectsha Session Initiation Protocol.

Table of Contents

OS] | =] (oY [Tox 1 o] o TR 1

IO I T oY LT o) S | PP 1.
1.2. SIP URI
1.3. SIP Network Elements
L.3.1. USEI AQEINTS .ottt ettt ettt et e e e s ettt e e e e e s em e e ee e e e e e s e e e e e e e e e e 2
1.3.2. PrOXY SEBIVEISutiiieiiieee e ittt s skttt et e e e 41 bttt e e e e e s ammneee e e e e e sa s b br s e ee e e e e e e s snnrr e e ees 3
RS TR T = LT o 1) (=T PP RPP PR 5
R TR B o LYo [T = Tod ST =T PSPPI 6
1.4, SIP IMIBSSAQTES. ... iuittteeeete e e e e et memeeeeat ettt e e e e et s s et bbb e e ettt e e e e s e s e e e e e e e s R e e e e et e e e e e n e e b nnreetee e e e e 1.
L1.4.L. SIP REOUESTES ...ttt ettt ettt e ettt e e e e e am e e ee e e e e e s et e te e e e 8
L1.4.2. SIP RESPDONSES. ... uititieeteeee et mmmmmm ettt e e a2 e s sk et e e e e e e e e 1 e b ee e e easn b b e et e e e e e e a e e annn e nreeeeee e s 9
1.5, SIP TIANSACHIONSceiiiiiiiieiiitieee s e e ettt e e e ettt ee e e sttt e e e e sabbe e e e eabee e e st beeee e s abeeeeessbbeeeeeanbbbeeeenbbeeaens
GRS 1o DT (oo T PP
1.6.1. Dialogs Facilitate Routing
1.6.2. Dialog IAENEFIEIS ..cceiiiiii ettt e e e e e e e e e e e e e e e e snnnees
1.7. Typical SIP Scenarios....................
A (=T o £ i = 11 o PP
1.7.2. SESSION INVILATION ...ttt e e e e
1.7.3. SESSION TEIMUNATION.......eiiiiiiiiee s mmmmmn ettt et e st e sm e e e e e s st e e s anr e e e e anes
1.7.4. Record ROULING........ccuvviiiiiiee e
1.7.5. Event Subscription And Notification
1.7.6. INSTANT MESSAGESciiiiiiiiiiiiieiiimemeeamstetetebebtb bbb b b e s e s e bb e bbb bbb ssn e enas

List of Figures

0 7 @3 o To BN SRR 2
1-2. SESSION INVILALION.eeiiiiitiiie et ccree ettt e et ee e et e e e s sttt e e s s bb e e e e s sbaeee e s sbbeeeeaneaeesans 4
1-3. REGISIIAI OVEIVIEWceiiiiiiiieiiiee e e eeeee ettt ee e e sttt e ee e s sttt ee e e abbe et e e sab e e e eteee e s shbeeee e s sbbeeeeeabbeeeeeenbbbeeeeannaenas 5
] | e =T o [T =T ox 1o o [P USPP PRI 6
1-5. SIP TFANSACHIONSeeeieiiutiieee ettt sttt e e e ettte e e e e sttt eeeesabbeeeeeasbbeesemeee e aabbeeeeesbbeeeeeanbbbeeeenbbeeeesnbeneanes 11
TS 1o B IT= 1o o ORI 12
ST 1 I =1 o 1.0 o TSP SPP TP 13
1-8. REGISTER MESSAGE FIOW ...ttt ettt e et ettt e e st e e s e e s neaeee s 14
1-9. INVITE MESSAGE FIOW.......ooiiiiiiiiie ittt ettt e e e s b be e e e s st e e e e e nte e e e e nnrees 5.1
1-10. BYE Message Flow (With and without RECOId ROULING) e ccovvvveeeiiiiiie it reeee e 16
1-11. Event Subscription AN NOLIFICATION......... oo eeeeiiiiiie ettt et e e eebeeee e e 17
1-12. INSTANT MESSAGES teteeeieteee e e e simmemeees it e et e e e e s e e s s e et e e e e e e aa st e e e et s s sh bbb e e et et e e e e e e s nnbba e et eeeeenasnmnnes 18

Chapter 1. SIP Introduction

1.1. Purpose of SIP

SIP stands for Session Initiation Protocol. It is an appilicalayer control protocol which has been developed
and designed within the IETF (http://www.ietf.org). The@fmcol has been designed with easy implementation,
good scalability, and flexibility in mind.

The specification is available in form of several RFCs, thestiraportant one is RFC3261
(http://lwww.ietf.org/rfc/rfc3261.txt) which containke core protocol specification. The protocol is used for
creating, modifying, and terminating sessions with one oreparticipants. By sessions we understand a set of
senders and receivers that communicate and the state kbptsie senders and receivers during the
communication. Examples of a session can include Inteetegphone calls, distribution of multimedia,
multimedia conferences, distributed computer games, etc.

SIP is not the only protocol that the communicating devicélsnged. It is not meant to be a general purpose
protocol. Purpose of SIP is just to make the communicatiasipde, the communication itself must be achieved
by another means (and possibly another protocol). Two podédhat are most often used along with SIP are
RTP and SDP. RTP protocol is used to carry the real-time melfia data (including audio, video, and text), the
protocol makes it possible to encode and split the data iatigts and transport such packets over the Internet.
Another important protocol is SDP, which is used to descaifse encode capabilities of session participants.
Such a description is then used to negotiate the charaatens the session so that all the devices can
participate (that includes, for example, negotiation afexs used to encode media so all the participants will be
able to decode it, negotiation of transport protocol usetisamnon).

SIP has been designed in conformance with the Internet mibdken end-to-end oriented signalling protocol
which means, that all the logic is stored in end devices (exmriting of SIP messages). State is also stored in
end-devices only, there is no single point of failure andvoeks designed this way scale well. The price that we
have to pay for the distributiveness and scalability is bighessage overhead, caused by the messages being
sent end-to-end.

It is worth of mentioning that the end-to-end concept of SIR significant divergence from regular PSTN
(Public Switched Telephone Network) where all the statelagit is stored in the network and end devices
(telephones) are very primitive. Aim of SIP is to provide #ame functionality that the traditional PSTNs have,
but the end-to-end design makes SIP networks much more pdwed open to the implementation of new
services that can be hardly implemented in the traditioSalNes.

SIP is based on HTTP protocol. The HTTP protocol inheritedhft of message headers from RFC822
(http://lwww.ietf.org/rfc/rfc822.t1xt). HTTP is probabtiie most successful and widely used protocol in the
Internet. It tries to combine the best of the both. In fact,Ti#Ican be classified as a signalling protocol too,
because user agents use the protocol to tell a HTTP servdriainwocuments they are interested in. SIP is used
to carry the description of session parameters, the deiserils encoded into a document using SDP. Both
protocols (HTTP and SIP) have inherited encoding of meshagders from RFC822
(http://lwww.ietf.org/rfc/rfc822.txt). The encoding hpsoven to be robust and flexible over the years.

Chapter 1. SIP Introduction

1.2. SIP URI

SIP entities are identified using SIP URI (Uniform Resoudentifier). A SIP URI has form of
sip:username@domain, for instance, sip:joe@companyA&ewe can see, SIP URI consists of username part
and domain name part delimited by @ (at) character. SIP URlIsimilar to e-mail addresses, it is, for instance,
possible to use the same URI for e-mail and SIP communicatiosh URIs are easy to remember.

1.3. SIP Network Elements

Although in the simplest configuration it is possible to us& fjwo user agents that send SIP messages directly
to each other, a typical SIP network will contain more thaa type of SIP elements. Basic SIP elements are
user agents, proxies, registrars, and redirect serversvilNgriefly describe them in this section.

Note that the elements, as presented in this section, ame offily logical entities. It is often profitable to
co-locate them together, for instance, to increase thedspigerocessing, but that depends on a particular
implementation and configuration.

1.3.1. User Agents

Internet end points that use SIP to find each other and to igatsession characteristics are calledr
agents User agents usually, but not necessarily, reside on asusamiputer in form of an application--this is
currently the most widely used approach, but user agentbeatso cellular phones, PSTN gateways, PDAs,
automated IVR systems and so on.

User agents are often reffered toldser Agent ServglUAS) andUser Agent Clien{UAC). UAS and UAC are
logical entities only, each user agent contains a UAC and .UM is the part of the user agent that sends
requests and receives responses. UAS is the part of thegearthat receives requests and sends responses.

Because a user agent contains both UAC and UAS, we often abg tiser agent behaves like a UAC or UAS.
For instance, caller’s user agent behaves like UAC whemiisan INVITE requests and receives responses to
the request. Callee’s user agent behaves like a UAS wheceitves the INVITE and sends responses.

But this situation changes when the callee decides to sentEsaBd terminate the session. In this case the
callee’s user agent (sending BYE) behaves like UAC and thersauser agent behaves like UAS.

Chapter 1. SIP Introduction

Figure 1-1. UAC and UAS

Callee A

UAC
Caller Stateful Forking Proxy
UAC |~ INVITE UAC [

Callee B
M gl

b UAS
BYE
UAC

Figure 1-1 shows three user agents and one stateful forkoxypEach user agent contains UAC and UAS. The
part of the proxy that receives the INVITE from the calleraefacts as a UAS. When forwarding the request
statefully the proxy creates two UACSs, each of them is resitbafor one branch.

In our example callee B picked up and later when he wants taitan the call it sends a BYE. At this time the
user agent that was previously UAS becomes a UAC and vicavers

1.3.2. Proxy Servers

In addition to that SIP allows creation of an infrastructof@etwork hosts callegroxy serversUser agents can
send messages to a proxy server. Proxy servers are verytanpentities in the SIP infrastructure. They
perform routing of a session invitations according to iegis current location, authentication, accounting and
many other important functions.

The most important task of a proxy server is to route sessiagitations “closer” to callee. The session invitation
will usually traverse a set of proxies until it finds one whietows the actual location of the callee. Such a proxy
will forward the session invitation directly to the calleedgthe callee will then accept or decline the session
invitation.

There are two basic types of SIP proxy servers--statelatsstateful.

Chapter 1. SIP Introduction

1.3.2.1. Stateless Servers

Stateless server are simple message forwarders. Theyritbmessages independently of each other. Although
messages are usually arranged into transactions (seers&d), stateless proxies do not take care of
transactions.

Stateless proxies are simple, but faster than statefulymewvers. They can be used as simple load balancers,
message translators and routers. One of drawbacks ofestafmioxies is that they are unable to absorb
retransmissions of messages and perform more advancéay,dot instance, forking or recursive traversal.

1.3.2.2. Stateful Servers

Stateful proxies are more complex. Upon reception of a retstateful proxies create a state and keep the state
until the transaction finishes. Some transactions, esihettiase created by INVITE, can last quite long (until
callee picks up or declines the call). Because statefulipsaxust maintain the state for the duration of the
transactions, their performance is limited.

The ability to associate SIP messages into transactioes gtateful proxies some interesting features. Stateful
proxies can perform forking, that means upon reception oéasage two or more messages will be sent out.

Stateful proxies can absorb retransmissions because tivgy, krom the transaction state, if they have already
received the same message (stateless proxies cannot deettieliecause they keep no state).

Stateful proxies can perform more complicated methods dfrfjpa user. It is, for instance, possible to try to
reach user’s office phone and when he doesn’t pick up therethis cedirected to his cell phone. Stateless
proxies can’t do this because they have no way of knowing hetransaction targeted to the office phone
finished.

Most SIP proxies today are stateful because their configurés usually very complex. They often perform
accounting, forking, some sort of NAT traversal aid andladise features require a stateful proxy.

1.3.2.3. Proxy Server Usage

A typical configuration is that each centrally administeeadity (a company, for instance) has it's own SIP
proxy server which is used by all user agents in the entitysiseippose that there are two companies A and B
and each of them has it's own proxy server. Figure 1-2 showsaheession invitation from employee Joe in
company A will reach employee Bob in company B.

Chapter 1. SIP Introduction
Figure 1-2. Session Invitation

DNS Server

2. SIP SRV
for b.com

Company A 3. proxy.b.com Company B

proxy.a.com

roxy.b.com
4. INVITEp Y

=0\

(7

=] _ 5. INVITE
Bob

(7amx)

1.2.3.4

User Joe uses address sip:bob@b.com to call Bob. Joe'sgesgtrdoesn’t know how to route the invitation
itself but it is configured to send all outbound traffic to tleenpany SIP proxy server proxy.a.com. The proxy
server figures out that user sip:bob@b.comis in a differemtpgany so it will look up B’s SIP proxy server and
send the invitation there. B’s proxy server can be eithecqméigured at proxy.a.com or the proxy will use DNS
SRV records to find B’s proxy server. The invitation reach@sp.bo.com. The proxy knows that Bob is
currently sitting in his office and is reachable through phon his desk, which has IP address 1.2.3.4, so the
proxy will send the invitation there.

1.3.3. Registrar

We mentioned that the SIP proxy at proxy.b.com knows cuBeits location but haven’t mentioned yet how a
proxy can learn current location of a user. Bob’s user aggiit phone) must register withregistrar. The
registrar is a special SIP entity that receives registnatioom users, extracts information about their current
location (IP address, port and username in this case) arebdtee information into location database. Purpose
of the location database is to map sip:bob@b.com to songelikimsip:bob@1.2.3.4:5060. The location
database is then used by B’s proxy server. When the proxjvescan invitation for sip:bob@b.com it will
search the location database. It finds sip:bob@1.2.3.8:806 will send the invitation there. A registrar is very
often a logical entity only. Because of their tight couplinigh proxies registrars, are usually co-located with
proxy servers.

Figure 1-3 shows a typical SIP registration. A REGISTER ragescontaining Address of Record
sip:jan@iptel.org and contact address sip:jan@1.2.868%here 1.2.3.4 is IP address of the phone, is sent to
the registrar. The registrar extracts this information stedes it into the location database. If everything went
well then the registrar sends a 200 OK response to the phahihamrocess of registration is finished.

Chapter 1. SIP Introduction
Figure 1-3. Registrar Overview

Location Database

Record in Location Database
User sip;jan@iptel.org is Useiligent Reg|s_trar Locatloizatabase
reachable at sip:jan@1.2.3.4:5060 REGISTER T
Store Location
2. STORE >
200 OK
1. REGISTER

sip:jan@iptel.org

'-‘/\A
— |
il

1.2.3.4:5060 3. 200 OK

Registrar

Each registration has a limited lifespan. Expires headkt dieexpires parameter of Contact header field
determines for how long is the registration valid. The uggmd must refresh the registration within the lifespan
otherwise it will expire and the user will become unavaiabl

1.3.4. Redirect Server

The entity that receives a request and sends back a replginong a list of the current location of a particular
user is callededirect server A redirect server receives requests and looks up the irteretipient of the
request in the location database created by a registraentdreates a list of current locations of the user and
sends it to the request originator in a response within 3agcl

The originator of the request then extracts the list of desibns and sends another request directly to them.
Figure 1-4 shows a typical redirection.

Chapter 1. SIP Introduction

Figure 1-4. SIP Redirection

Redirect Server

| —

INVITE #1 ||

302 Moved Temporarily

‘O > Oy

INVITE #2
User Agent A User Agent B

1.4. SIP Messages

Communication using SIP (often called signalling) comgsisf series omessagesMessages can be
transported independently by the network. Usually theytramesported in a separate UDP datagram each. Each
message consist of “first line”, message header, and mebsdgeThe first line identifies type of the message.
There are two types of messagesguestandresponsesRequests are usually used to initiate some action or
inform recipient of the request of something. Replies argglus confirm that a request was received and
processed and contain the status of the processing.

A typical SIP request looks like this:

I NVI TE sip: 7170@ptel .org SIP/ 2.0

Via: SIP/2.0/UDP 195.37.77.100: 5040; r port

Max- Forwar ds: 10

From "jiri" <sip:jiri@ptel.org>;tag=76ff7a07-c091-4192-84a0- d56e91f e104f

To: <sip:jiri @at.iptel.org>

Cal | -1 D: d10815e0- bf 17- 4af a- 8412- d9130a793d96@13. 20. 128. 35

CSeq: 2 INVITE

Contact: <sip:213.20.128. 35: 9315>

User - Agent: W ndows RTC/ 1.0

Proxy- Aut hori zati on: Digest usernane="jiri", real m="iptel.org",
al gorithm="NMD5", uri="sip:jiri @at.iptel.org",
nonce="3cef 753900000001771328f 5aelb8b7f 0d742dalf eb5753c",
response="53f e98db10e1074

b03b3e06438bda70f "

Cont ent - Type: application/sdp

Content - Length: 451

v=0

o=jku2 0 0 INIP4 213.20.128.35
S=sessi on

c=IN I P4 213.20.128. 35

b=CT: 1000

Chapter 1. SIP Introduction

t=0 0

mFaudi o 54742 RTP/ AVP 97 111 112 6 0 8 4 5 3 101
a=rt pmap: 97 red/ 8000

a=rt pmap: 111 SI REN 16000

a=fntp: 111 bitrate=16000

a=rtpmap: 112 Gr221/ 16000

a=fntp: 112 bitrate=24000

a=rt pmap: 6 DVI 4/ 16000

a=rt pmap: 0 PCMJ 8000

a=rt pmap: 4 G723/8000

a=rt pmap: 3 GSM 8000

a=rt pmap: 101 tel ephone-event/ 8000
a=fmp: 101 0-16

The first line tells us that this is INVITE message which isdiseestablish a session. The URI on the first
line--sip:7170@iptel.org is callddequest URaNd contains URI of the next hop of the message. In this case it
will be host iptel.org.

A SIP request can contain one or more Via header fields whighised to record path of the request. They are
later used to route SIP responses exactly the same way. Mi@B\message contains just one Via header field
which was created by the user agent that sent the request.tReoVia field we can tell that the user agent is
running on host 195.37.77.100 and port 5060.

From and To header fields identify initiator (caller) andipént (callee) of the invitation (just like in SMTP
where they identify sender and recipient of a message). Reader field contains a tag parameter which serves
as a dialog identifier and will be described in Section 1.6.

Call-ID header field is a dialog identifier and it's purpos&isdentify messages belonging to the same call.
Such messages have the same Call-ID identifier. CSeq is asedimtain order of requests. Because requests
can be sent over an unreliable transport that can re-ordesages, a sequence number must be presentin the
messages so that recipient can identify retransmissiahs@arof order requests.

Contact header field contains IP aaddress and port on whecsetider is awaiting further requests sent by
callee. Other header fields are not important and will be petdbed here.

Message header is delimited from message body by an emptyMiessage body of the INVITE request
contains a description of the media type accepted by thees@mdl encoded in SDP.

1.4.1. SIP Requests

We have described how an INVITE request looks like and saitlttie request is used to invite a callee to a
session. Other important requests are:

« ACK--This message acknowledges receipt of a final responsedty BN Establishing of a session utilizes
3-way hand-shaking due to asymmetric nature of the ineitati may take a while before the callee accepts
or declines the call so the callee’s user agent periodicathansmits a positive final response until it receives
an ACK (which indicates that the caller is still there anddyt communicate).

Chapter 1. SIP Introduction

- BYE-Bye messages are used to tear down multimedia sessiorastyAwishing to tear down a session sends
a BYE to the other party.

« CANCEL:-Cancel is used to cancel not yet fully established sesHigused when the callee hasn't replied
with a final response yet but the caller wants to abort the(tygdically when a callee doesn’t respond for
some time).

« REGISTERPurpose of REGISTER request is to let registrar know ofentruser’s location. Information
about current IP address and port on which a user can be Ecta&rried in REGISTER messages. Registrar
extracts this information and puts it into a location dat#bd he database can be later used by SIP proxy
servers to route calls to the user. Registrations are timiged and need to be periodically refreshed.

The listed requests usually have no message body becassmitrieeded in most situations (but can have one).
In addition to that many other request types have been debimettheir description is out of the scope of this
document.

1.4.2. SIP Responses

When a user agent or proxy server receives a request it sapdyaEach request must be replied except ACK
requests which trigger no replies.

A typical reply looks like this:

SIP/2.0 200 K
Via: SIP/2.0/UDP 192.168. 1. 30: 5060; r ecei ved=66. 87. 48. 68
From sip:sip2@ptel.org
To: sip:sip2@ptel.org;tag=794f e65cl6edf df 45dadf c39a5d2867c. b713
Cal |l -1D: 2443936363@L92. 168. 1. 30
CSeq: 63629 REQ STER
Contact: <sip:sip2@®6.87.48.68:5060;transport=udp>; q=0. 00; expi res=120
Server: Sip EXpress router (0.8.11lpre2ixrc (i386/1inux))
Content-Length: O
WAr ni ng: 392 195.37.77.101: 5060 "Noi sy feedback tells:
pi d=5110 req_src_i p=66.87.48.68 req_src_port=5060 in_uri=sip:iptel.org
out _uri=sip:iptel.org via_cnt==1"

As we can see, responses are very similar to the requeseptdrc the first line. The first line of response
contains protocol version (SIP/2.0), reply code, and negdoase.

Thereply codes an integer number from 100 to 699 and indicates type oféhpanse. There are 6 classes of
responses:

« lxxareprovisionalresponses. A provisional response is response that telfsrecipient that the associated
request was received but result of the processing is not Riyatv Provisional responses are sent only when
the processing doesn't finish immediately. The sender moptretransmitting the request upon reception of a
provisional response.

Typically proxy servers send responses with code 100 whegndtart processing an INVITE and user agents
send responses with code 180 (Ringing) which means thastleets phone is ringing.

Chapter 1. SIP Introduction

« 2xxresponses angositive finaresponses. A final response is the ultimate response thatitfieator of the
request will ever receive. Therefore final responses espesailt of the processing of the associated request.
Final responses also terminate transactions. Respongesasdie from 200 to 299 are positive responses that
means that the request was processed successfully andextdegr instance a 200 OK response is sent when
a user accepts invitation to a session (INVITE request).

A UAC may receive several 200 messages to a single INVITEestThis is because a forking proxy
(described later) can fork the request so it will reach ssEgAS and each of them will accept the invitation.

In this case each response is distinguished by the tag pteaimé@o header field. Each response represents a
distinct dialog with unambiguous dialog identifier.

« 3xxresponses are used to redirect a caller. A redirection nsgpgives information about the user’s new
location or an alternative service that the caller mighttosgatisfy the call. Redirection responses are usually
sent by proxy servers. When a proxy receives a request amthda@nt or can’t process it for any reason, it
will send a redirection response to the caller and put amdtieation into the response which the caller might
want to try. It can be the location of another proxy or the enttocation of the callee (from the location
database created by a registrar). The caller is then sugpose-send the request to the new location. 3xx
responses are final.

+ 4xxarenegative finatesponses. a 4xx response means that the problem is on ther'seside. The request
couldn’t be processed because it contains bad syntax ootherulfilled at that server.

« 5xxmeans that the problem is on server’s side. The request &apiby valid but the server failed to fulfill it.
Clients should usually retry the request later.

« 6xxreply code means that the request cannot be fulfilled at amgisd his response is usually sent by a
server that has definitive information about a particul@rudser agents usually send a 603 Decline response
when the user doesn’t want to participate in the session.

In addition to the response class the first line also conte@son phraseThe code number is intended to be
processed by machines. It is not very human-friendly bt vieiry easy to parse and understand by machines.
The reason phrase usually contains a human-readable reetesgyibing the result of the processing. A user
agent should render the reason phrase to the user.

The request to which a particular response belongs is fikzhtising the CSeq header field. In addition to the
sequence number this header field also contains methodrmespanding request. In our example it was
REGISTER request.

1.5. SIP Transactions

Although we said that SIP messages are sent independeetiyt@/network, they are usually arranged into
transactiondy user agents and certain types of proxy servers. Ther8ieYés said to be fransactional
protocol

A transaction is a sequence of SIP messages exchanged h&Vireretwork elements. A transaction consists of
one request and all responses to that request. That inclede®r more provisional responses and one or more
final responses (remember that an INVITE might be answeraddrg than one final response when a proxy
server forks the request).

10

Chapter 1. SIP Introduction

If a transaction was initiated by an INVITE request then thme transaction also includes ACK, but only if the
final response was not a 2xx response. If the final responsa @®s response then the ACK is not considered
part of the transaction.

As we can see this is quite asymmetric behavior--ACK is plttamsactions with a negative final response but is
not part of transactions with positive final responses. Hason for this separation is the importance of delivery
of all 200 OK messages. Not only that they establish a sessidralso 200 OK can be generated by multiple
entities when a proxy server forks the request and all of threrst be delivered to the calling user agent.
Therefore user agents take responsibility in this case etndirsmit 200 OK responses until they receive an
ACK. Also note that only responses to INVITE are retranseitt

SIP entities that have notion of transactions are catatkful Such entities usually create a state associated with
a transaction that is kept in the memory for the duration efttansaction. When a request or response comes, a
stateful entity tries to associate the request (or respaasxisting transactions. To be able to do it it must
extract a unique transaction identifier from the messagecamgpare it to identifiers of all existing transactions.

If such a transaction exists then it's state gets updated the message.

In the previous SIP RFC2543 (http://www.ietf.org/rfc2f23.txt) the transaction identifier was calculated as
hash of all important message header fields (that includeBroo, Request-URI and CSeq). This proved to be
very slow and complex, during interoperability tests suahsaction identifiers used to be a common source of
problems.

In the new RFC3261 (http://www.ietf.org/rfc/rfc3261)t#he way of calculating transaction identifiers was
completely changed. Instead of complicated hashing of itapbheader fields a SIP message now includes the
identifier directly. Branch parameter of Via header fieldstains directly the transaction identifier. This is
significant simplification, but there still exist old implemtations that don’t support the new way of calculating
of transaction identifier so even new implementations haseipport the old way. They must be backwards
compatible.

Figure 1-5 shows what messages belong to what transactimimgc conversation of two user agents.
Figure 1-5. SIP Transactions

Caller Callee

INVITE

100 Trying

180 Ringing Transaction #1

200 OK

4—

ACK

R

BYE

200 OK Transaction #2

11

Chapter 1. SIP Introduction

1.6. SIP Dialogs

We have shown what transactions are, that one transacttrdigs INVITE and it's responses and another
transaction includes BYE and it responses when a sessiairig torn down. But we feel that those two
transactions should be somehow related--both of them petothe samelialog. A dialog represents a
peer-to-peer SIP relationship between two user agentsaldglpersists for some time and it is very important
concept for user agents. Dialogs facilitate proper seqgangrand routing of messages between SIP endpoints.

Dialogs are identified using Call-ID, From tag, and To tag skBges that have these three identifiers same
belong to the same dialog. We have shown that CSeq headeisfigded to order messages, in fact it is used to
order messages within a dialog. The number must be monatbniccreased for each message sent within a
dialog otherwise the peer will handle it as out of order resfjoe retransmission. In fact, the CSeq number
identifies a transaction within a dialog because we havetbaidequests and associated responses are called
transaction. This means that only one transaction in eaeltétin can be active within a dialog. One could also
say that alialog is a sequence of transactiofiSgure 1-6 extends Figure 1-5 to show which messages b#ong
the same dialog.

Figure 1-6. SIP Dialog

Caller Callee
INVITE \
100 Trying
Trans.
180 Ringing #1
200 OK
l Dialog
ACK
BYE
200 OK Trans.
| #2

Some messages establish a dialog and some do not. This édl@xplicitly express the relationship of messages
and also to send messages that are not related to other regssdgide a dialog. That is easier to implement
because user agent don’t have to keep the dialog state.

For instance, INVITE message establishes a dialog, bedawgebe later followed by BYE request which will
tear down the session established by the INVITE. This BYEerg svithin the dialog established by the INVITE.

12

Chapter 1. SIP Introduction

But if a user agent sends a MESSAGE request, such a requestdestablish any dialog. Any subsequent
messages (even MESSAGE) will be sent independently of #ndqrs one.

1.6.1. Dialogs Facilitate Routing
We have said that dialogs are also used to route the messgigeein user agents, let's describe this a little bit.

Let's suppose that user sip:bob@a.com wants to talk to is@ese @b.com. He knows SIP address of the callee
(sip:pete@b.com) but this address doesn’t say anythingtatuwrent location of the user--i.e. the caller doesn'’t
know to which host to send the request. Therefore the INVidduest will be sent to a proxy server.

The request will be sent from proxy to proxy until it reacheg that knows current location of the callee. This
process is called routing. Once the request reaches tleectike callee’s user agent will create a response that
will be sent back to the caller. Callee’s user agent will glabContact header field into the response which will
contain the current location of the user. The original refjaéso contained Contact header field which means
that both user agents know the current location of the peer.

Because the user agents know location of each other, it isgegssary to send further requests to any
proxy--they can be sent directly from user agent to usertagéiat’s exactly how dialogs facilitate routing.

Further messages within a dialog are sent directly from agent to user agent. This is a significant
performance improvement because proxies do not see alléssages within a dialog, they are used to route just
the first request that establishes the dialog. The directages are also delivered with much smaller latency
because a typical proxy usually implements complex routigie. Figure 1-7 contains an example of a message
within a dialog (BYE) that bypasses the proxies.

Figure 1-7. SIP Trapezoid

Proxy 1 Proxy 2

E INVITE E

. .

1 1

INVITE INVITE

© s GO

Caller Callee

13

Chapter 1. SIP Introduction

1.6.2. Dialog Identifiers

We have already shown that dialog identifiers consist oftipagts, Call-Id, From tag, and To tag, but it is not
that clear why are dialog identifiers created exactly thig aad who contributes which part.

Call-ID is so calleccall identifier. It must be a unique string that identifies a call. A call cetssof one or more
dialogs. Multiple user agents may respond to a request wipeog along the path forks the request. Each user
agent that sends a 2xx establishes a separate dialog withltee All such dialogs are part of the same call and
have the same Call-ID.

From tag is generated by the caller and it uniquely identtfiedialog in the caller’s user agent.
To tag is generated by a callee and it uniquely identifies likes From tag, the dialog in the callee’s user agent.

This hierarchical dialog identifier is necessary becausegiescall invitation can create several dialogs and
caller must be able to distinguish them.

1.7. Typical SIP Scenarios

This section gives a brief overview of typical SIP scenatfi@a usually make up the SIP traffic.

1.7.1. Registration

Users must register themselves with a registrar to be rééeba other users. A registration comprises a
REGISTER message followed by a 200 OK sent by registrar ifelyestration was successful. Registrations are
usually authorized so a 407 reply can appear if the user dilavide valid credentials. Figure 1-8 shows an
example of registration.

Figure 1-8. REGISTER Message Flow

User Agent Registrar

REGISTER
w/o credentials

>

407

REGISTER
w/ credentials
< 200 OK

14

Chapter 1. SIP Introduction

1.7.2. Session Invitation

A session invitation consists of one INVITE request whichssially sent to a proxy. The proxy sends
immediately a 100 Trying reply to stop retransmissions amaiérds the request further.

All provisional responses generated by callee are senttoetle caller. See 180 Ringing response in the call
flow. The response is generated when callee’s phone stagigg.

Figure 1-9. INVITE Message Flow

Ciller SIP_P_roxy Ci”ie
INVITE
100 Trying
INVITE I
100 Trying
| 180 Ringing
180 Ringing
200 OK
4—
200 OK
ACK >
RTP Streams
! 1

A 200 OK is generated once the callee picks up the phone amddatransmitted by the callee’s user agent until it
receives an ACK from the caller. The session is establishéddsapoint.

1.7.3. Session Termination

Session termination is accomplished by sending a BYE requitin dialog established bye INVITE. BYE
messages are sent directly from one user agent to the otlesisumproxy on the path of the INVITE request
indicated that it wishes to stay on the path by using recoutimg (see Section 1.7.4.

Party wishing to tear down a session sends a BYE request tuthiee party involved in the session. The other
party sends a 200 OK response to confirm the BYE and the sdasdienminated. See Figure 1-10, left message
flow.

15

Chapter 1. SIP Introduction

1.7.4. Record Routing

All requests sent within a dialog are by default sent digeftdm one user agent to the other. Only requests
outside a dialog traverse SIP proxies. This approach madkes&work more scalable because only a small
number of SIP messages hit the proxies.

There are certain situations in which a SIP proxy need to@tape path of all further messages. For instance,
proxies controlling a NAT box or proxies doing accountingdéo stay on the path of BYE requests.

Mechanism by which a proxy can inform user agents that it @sso stay on the path of all further messages is
calledrecord routing Such a proxy would insert Record-Route header field intorf¢Bsages which contain
address of the proxy. Messages sent within a dialog will thererse all SIP proxies that put a Record-Route
header field into the message.

The recipient of the request receives a set of Record-Raatddr fields in the message. It must mirror all the
Record-Route header fields into responses because theatagof the request also needs to know the set of
proxies.

Figure 1-10. BYE Message Flow (With and without Record Routig)

Without record routing With record routing
UA1 SIP_P_roxy UA2 li/—_1 SIP_P_roxy LiA_Z
—|_ BYE BYE
——>»
200 OK BYE |
200 OK
200 OK

Left message flow of Figure 1-10 show how a BYE (request withdéhog established by INVITE) is sent
directly to the other user agent when there is no Record€uedider field in the message. Right message flow
show how the situation changes when the proxy puts a Recoutefheader field into the message.

1.7.4.1. Strict versus Loose Routing

The way how record routing works has evolved. Record rowtaprding to RFC2543
(http://lwww.ietf.org/rfc/rfc2543.1xt) rewrote the Reegt-URI. That means the Request-URI always contained
URI of the next hop (which can be either next proxy server Winserted Record-Route header field or
destination user agent). Because of that it was necesasgvtothe original Request-URI as the last Route
header field. This approach is callstlict routing

16

Chapter 1. SIP Introduction

Loose routingas specified in RFC3261 (http://www.ietf.org/rfc/rfc326t), works in a little bit different way.
The Request-URI is no more overwritten, it always contaif of the destination user agent. If there are any
Route header field in a message, than the message is sentiBltfrom the topmost Route header field. This is
significant change--Request-URI doesn’t necessarilyatodRI to which the request will be sent. In fact, loose
routing is very similar to IP source routing.

Because transit from strict routing to loose routing wouleldk backwards compatibility and older user agents
wouldn’'t work, it is necesarry to make loose routing backi¥gacompatible. The backwards compatibility
unfortunately adds a lot of overhead and is often source gmpaoblems.

1.7.5. Event Subscription And Notification

The SIP specification has been extended to support a genecabmism allowing subscription to asynchronous
events. Such evens can include SIP proxy statistics chapgesence information, session changes and so on.

The mechanism is used mainly to convey information on presénillingness to communicate) of users.
Figure 1-11 shows the basic message flow.

Figure 1-11. Event Subscription And Notification

User_A_gent Sﬂv_er
SUBSCRIBE »
200 OK
NOTIFY
200 OK >
< NOTIFY <—Eﬂt
200 OK »

A user agent interested in event notification sends a SUBBERiessage to a SIP server. The SUBSCRIBE
message establishes a dialog and is immediately replielddoserver using 200 OK response. At this point the
dialog is established. The server sends a NOTIFY requekttager every time the event to which the user
subscribed changes. NOTIFY messages are sent within tlogdiatablished by the SUBSCRIBE.

Note that the first NOTIFY message in Figure 1-11 is sent iiigas of any event that triggers notifications.

Subscriptions--as well as registrations--have limitégsipan and therefore must be periodically refreshed.

17

Chapter 1. SIP Introduction

1.7.6. Instant Messages

Instant messages are sent using MESSAGE request. MESSAf@ESts do not establish a dialog and therefore
they will always traverse the same set of proxies. This isthmplest form of sending instant messages. The text
of the instant message is transported in the body of the $jlrest.

Figure 1-12. Instant Messages

User Agent Proxy User Agent
MESSAGE
MESSAGE
200 OK
‘ 200 OK
@ ESSASE
@ ESSAGE |
200 OK
' | 200K

18

